| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ballotth.m |
|- M e. NN |
| 2 |
|
ballotth.n |
|- N e. NN |
| 3 |
|
ballotth.o |
|- O = { c e. ~P ( 1 ... ( M + N ) ) | ( # ` c ) = M } |
| 4 |
|
ballotth.p |
|- P = ( x e. ~P O |-> ( ( # ` x ) / ( # ` O ) ) ) |
| 5 |
|
ballotth.f |
|- F = ( c e. O |-> ( i e. ZZ |-> ( ( # ` ( ( 1 ... i ) i^i c ) ) - ( # ` ( ( 1 ... i ) \ c ) ) ) ) ) |
| 6 |
|
ballotth.e |
|- E = { c e. O | A. i e. ( 1 ... ( M + N ) ) 0 < ( ( F ` c ) ` i ) } |
| 7 |
|
ballotth.mgtn |
|- N < M |
| 8 |
|
ballotth.i |
|- I = ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) |
| 9 |
|
fveq2 |
|- ( d = C -> ( F ` d ) = ( F ` C ) ) |
| 10 |
9
|
fveq1d |
|- ( d = C -> ( ( F ` d ) ` k ) = ( ( F ` C ) ` k ) ) |
| 11 |
10
|
eqeq1d |
|- ( d = C -> ( ( ( F ` d ) ` k ) = 0 <-> ( ( F ` C ) ` k ) = 0 ) ) |
| 12 |
11
|
rabbidv |
|- ( d = C -> { k e. ( 1 ... ( M + N ) ) | ( ( F ` d ) ` k ) = 0 } = { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } ) |
| 13 |
12
|
infeq1d |
|- ( d = C -> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` d ) ` k ) = 0 } , RR , < ) = inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) |
| 14 |
|
fveq2 |
|- ( c = d -> ( F ` c ) = ( F ` d ) ) |
| 15 |
14
|
fveq1d |
|- ( c = d -> ( ( F ` c ) ` k ) = ( ( F ` d ) ` k ) ) |
| 16 |
15
|
eqeq1d |
|- ( c = d -> ( ( ( F ` c ) ` k ) = 0 <-> ( ( F ` d ) ` k ) = 0 ) ) |
| 17 |
16
|
rabbidv |
|- ( c = d -> { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } = { k e. ( 1 ... ( M + N ) ) | ( ( F ` d ) ` k ) = 0 } ) |
| 18 |
17
|
infeq1d |
|- ( c = d -> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) = inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` d ) ` k ) = 0 } , RR , < ) ) |
| 19 |
18
|
cbvmptv |
|- ( c e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` c ) ` k ) = 0 } , RR , < ) ) = ( d e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` d ) ` k ) = 0 } , RR , < ) ) |
| 20 |
8 19
|
eqtri |
|- I = ( d e. ( O \ E ) |-> inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` d ) ` k ) = 0 } , RR , < ) ) |
| 21 |
|
ltso |
|- < Or RR |
| 22 |
21
|
infex |
|- inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) e. _V |
| 23 |
13 20 22
|
fvmpt |
|- ( C e. ( O \ E ) -> ( I ` C ) = inf ( { k e. ( 1 ... ( M + N ) ) | ( ( F ` C ) ` k ) = 0 } , RR , < ) ) |