| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ballotth.m | ⊢ 𝑀  ∈  ℕ | 
						
							| 2 |  | ballotth.n | ⊢ 𝑁  ∈  ℕ | 
						
							| 3 |  | ballotth.o | ⊢ 𝑂  =  { 𝑐  ∈  𝒫  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ♯ ‘ 𝑐 )  =  𝑀 } | 
						
							| 4 |  | ballotth.p | ⊢ 𝑃  =  ( 𝑥  ∈  𝒫  𝑂  ↦  ( ( ♯ ‘ 𝑥 )  /  ( ♯ ‘ 𝑂 ) ) ) | 
						
							| 5 |  | ballotth.f | ⊢ 𝐹  =  ( 𝑐  ∈  𝑂  ↦  ( 𝑖  ∈  ℤ  ↦  ( ( ♯ ‘ ( ( 1 ... 𝑖 )  ∩  𝑐 ) )  −  ( ♯ ‘ ( ( 1 ... 𝑖 )  ∖  𝑐 ) ) ) ) ) | 
						
							| 6 |  | ballotth.e | ⊢ 𝐸  =  { 𝑐  ∈  𝑂  ∣  ∀ 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) 0  <  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑖 ) } | 
						
							| 7 |  | ballotth.mgtn | ⊢ 𝑁  <  𝑀 | 
						
							| 8 |  | ballotth.i | ⊢ 𝐼  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  inf ( { 𝑘  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∣  ( ( 𝐹 ‘ 𝑐 ) ‘ 𝑘 )  =  0 } ,  ℝ ,   <  ) ) | 
						
							| 9 |  | ballotth.s | ⊢ 𝑆  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( 𝑖  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ↦  if ( 𝑖  ≤  ( 𝐼 ‘ 𝑐 ) ,  ( ( ( 𝐼 ‘ 𝑐 )  +  1 )  −  𝑖 ) ,  𝑖 ) ) ) | 
						
							| 10 |  | ballotth.r | ⊢ 𝑅  =  ( 𝑐  ∈  ( 𝑂  ∖  𝐸 )  ↦  ( ( 𝑆 ‘ 𝑐 )  “  𝑐 ) ) | 
						
							| 11 |  | nnaddcl | ⊢ ( ( 𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  +  𝑁 )  ∈  ℕ ) | 
						
							| 12 | 1 2 11 | mp2an | ⊢ ( 𝑀  +  𝑁 )  ∈  ℕ | 
						
							| 13 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 14 | 12 13 | eleqtri | ⊢ ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 1 ) | 
						
							| 15 |  | eluzfz1 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 16 | 14 15 | mp1i | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 | ballotlemiex | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  ( ( 𝐹 ‘ 𝐶 ) ‘ ( 𝐼 ‘ 𝐶 ) )  =  0 ) ) | 
						
							| 18 | 17 | simpld | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 19 |  | elfzle1 | ⊢ ( ( 𝐼 ‘ 𝐶 )  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  →  1  ≤  ( 𝐼 ‘ 𝐶 ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  1  ≤  ( 𝐼 ‘ 𝐶 ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 | ballotlemrv1 | ⊢ ( ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  ∧  1  ∈  ( 1 ... ( 𝑀  +  𝑁 ) )  ∧  1  ≤  ( 𝐼 ‘ 𝐶 ) )  →  ( 1  ∈  ( 𝑅 ‘ 𝐶 )  ↔  ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  1 )  ∈  𝐶 ) ) | 
						
							| 22 | 16 20 21 | mpd3an23 | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 1  ∈  ( 𝑅 ‘ 𝐶 )  ↔  ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  1 )  ∈  𝐶 ) ) | 
						
							| 23 | 18 | elfzelzd | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℤ ) | 
						
							| 24 | 23 | zcnd | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 𝐼 ‘ 𝐶 )  ∈  ℂ ) | 
						
							| 25 |  | 1cnd | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  1  ∈  ℂ ) | 
						
							| 26 | 24 25 | pncand | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  1 )  =  ( 𝐼 ‘ 𝐶 ) ) | 
						
							| 27 | 26 | eleq1d | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( ( ( ( 𝐼 ‘ 𝐶 )  +  1 )  −  1 )  ∈  𝐶  ↔  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 ) ) | 
						
							| 28 | 22 27 | bitrd | ⊢ ( 𝐶  ∈  ( 𝑂  ∖  𝐸 )  →  ( 1  ∈  ( 𝑅 ‘ 𝐶 )  ↔  ( 𝐼 ‘ 𝐶 )  ∈  𝐶 ) ) |