Metamath Proof Explorer


Theorem ballotlem1ri

Description: When the vote on the first tie is for A, the first vote is also for A on the reverse counting. (Contributed by Thierry Arnoux, 18-Apr-2017)

Ref Expression
Hypotheses ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
Assertion ballotlem1ri ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 1 ∈ ( 𝑅𝐶 ) ↔ ( 𝐼𝐶 ) ∈ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 ballotth.m 𝑀 ∈ ℕ
2 ballotth.n 𝑁 ∈ ℕ
3 ballotth.o 𝑂 = { 𝑐 ∈ 𝒫 ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ♯ ‘ 𝑐 ) = 𝑀 }
4 ballotth.p 𝑃 = ( 𝑥 ∈ 𝒫 𝑂 ↦ ( ( ♯ ‘ 𝑥 ) / ( ♯ ‘ 𝑂 ) ) )
5 ballotth.f 𝐹 = ( 𝑐𝑂 ↦ ( 𝑖 ∈ ℤ ↦ ( ( ♯ ‘ ( ( 1 ... 𝑖 ) ∩ 𝑐 ) ) − ( ♯ ‘ ( ( 1 ... 𝑖 ) ∖ 𝑐 ) ) ) ) )
6 ballotth.e 𝐸 = { 𝑐𝑂 ∣ ∀ 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) 0 < ( ( 𝐹𝑐 ) ‘ 𝑖 ) }
7 ballotth.mgtn 𝑁 < 𝑀
8 ballotth.i 𝐼 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ inf ( { 𝑘 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∣ ( ( 𝐹𝑐 ) ‘ 𝑘 ) = 0 } , ℝ , < ) )
9 ballotth.s 𝑆 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( 𝑖 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ↦ if ( 𝑖 ≤ ( 𝐼𝑐 ) , ( ( ( 𝐼𝑐 ) + 1 ) − 𝑖 ) , 𝑖 ) ) )
10 ballotth.r 𝑅 = ( 𝑐 ∈ ( 𝑂𝐸 ) ↦ ( ( 𝑆𝑐 ) “ 𝑐 ) )
11 nnaddcl ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 + 𝑁 ) ∈ ℕ )
12 1 2 11 mp2an ( 𝑀 + 𝑁 ) ∈ ℕ
13 nnuz ℕ = ( ℤ ‘ 1 )
14 12 13 eleqtri ( 𝑀 + 𝑁 ) ∈ ( ℤ ‘ 1 )
15 eluzfz1 ( ( 𝑀 + 𝑁 ) ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) )
16 14 15 mp1i ( 𝐶 ∈ ( 𝑂𝐸 ) → 1 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) )
17 1 2 3 4 5 6 7 8 ballotlemiex ( 𝐶 ∈ ( 𝑂𝐸 ) → ( ( 𝐼𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ ( ( 𝐹𝐶 ) ‘ ( 𝐼𝐶 ) ) = 0 ) )
18 17 simpld ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) )
19 elfzle1 ( ( 𝐼𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → 1 ≤ ( 𝐼𝐶 ) )
20 18 19 syl ( 𝐶 ∈ ( 𝑂𝐸 ) → 1 ≤ ( 𝐼𝐶 ) )
21 1 2 3 4 5 6 7 8 9 10 ballotlemrv1 ( ( 𝐶 ∈ ( 𝑂𝐸 ) ∧ 1 ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) ∧ 1 ≤ ( 𝐼𝐶 ) ) → ( 1 ∈ ( 𝑅𝐶 ) ↔ ( ( ( 𝐼𝐶 ) + 1 ) − 1 ) ∈ 𝐶 ) )
22 16 20 21 mpd3an23 ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 1 ∈ ( 𝑅𝐶 ) ↔ ( ( ( 𝐼𝐶 ) + 1 ) − 1 ) ∈ 𝐶 ) )
23 elfzelz ( ( 𝐼𝐶 ) ∈ ( 1 ... ( 𝑀 + 𝑁 ) ) → ( 𝐼𝐶 ) ∈ ℤ )
24 18 23 syl ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼𝐶 ) ∈ ℤ )
25 24 zcnd ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 𝐼𝐶 ) ∈ ℂ )
26 1cnd ( 𝐶 ∈ ( 𝑂𝐸 ) → 1 ∈ ℂ )
27 25 26 pncand ( 𝐶 ∈ ( 𝑂𝐸 ) → ( ( ( 𝐼𝐶 ) + 1 ) − 1 ) = ( 𝐼𝐶 ) )
28 27 eleq1d ( 𝐶 ∈ ( 𝑂𝐸 ) → ( ( ( ( 𝐼𝐶 ) + 1 ) − 1 ) ∈ 𝐶 ↔ ( 𝐼𝐶 ) ∈ 𝐶 ) )
29 22 28 bitrd ( 𝐶 ∈ ( 𝑂𝐸 ) → ( 1 ∈ ( 𝑅𝐶 ) ↔ ( 𝐼𝐶 ) ∈ 𝐶 ) )