Step |
Hyp |
Ref |
Expression |
1 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
2 |
|
bcpasc |
|- ( ( ( N - 1 ) e. NN0 /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( ( ( N - 1 ) + 1 ) _C K ) ) |
3 |
1 2
|
sylan |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( ( ( N - 1 ) + 1 ) _C K ) ) |
4 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
5 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
6 |
4 5
|
syl |
|- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
7 |
6
|
adantr |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( N - 1 ) + 1 ) = N ) |
8 |
7
|
oveq1d |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( N _C K ) ) |
9 |
3 8
|
eqtrd |
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( N _C K ) ) |