| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 2 |  | bcpasc |  |-  ( ( ( N - 1 ) e. NN0 /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( ( ( N - 1 ) + 1 ) _C K ) ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( ( ( N - 1 ) + 1 ) _C K ) ) | 
						
							| 4 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 5 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 6 | 4 5 | syl |  |-  ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 7 | 6 | adantr |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( N _C K ) ) | 
						
							| 9 | 3 8 | eqtrd |  |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( N _C K ) ) |