Metamath Proof Explorer


Theorem bcpascm1

Description: Pascal's rule for the binomial coefficient, generalized to all integers K , shifted down by 1. (Contributed by AV, 8-Sep-2019)

Ref Expression
Assertion bcpascm1
|- ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( N _C K ) )

Proof

Step Hyp Ref Expression
1 nnm1nn0
 |-  ( N e. NN -> ( N - 1 ) e. NN0 )
2 bcpasc
 |-  ( ( ( N - 1 ) e. NN0 /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( ( ( N - 1 ) + 1 ) _C K ) )
3 1 2 sylan
 |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( ( ( N - 1 ) + 1 ) _C K ) )
4 nncn
 |-  ( N e. NN -> N e. CC )
5 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
6 4 5 syl
 |-  ( N e. NN -> ( ( N - 1 ) + 1 ) = N )
7 6 adantr
 |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( N - 1 ) + 1 ) = N )
8 7 oveq1d
 |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) + 1 ) _C K ) = ( N _C K ) )
9 3 8 eqtrd
 |-  ( ( N e. NN /\ K e. ZZ ) -> ( ( ( N - 1 ) _C K ) + ( ( N - 1 ) _C ( K - 1 ) ) ) = ( N _C K ) )