| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1cnd |  |-  ( N e. NN -> 1 e. CC ) | 
						
							| 2 |  | negid |  |-  ( 1 e. CC -> ( 1 + -u 1 ) = 0 ) | 
						
							| 3 | 2 | eqcomd |  |-  ( 1 e. CC -> 0 = ( 1 + -u 1 ) ) | 
						
							| 4 | 1 3 | syl |  |-  ( N e. NN -> 0 = ( 1 + -u 1 ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( N e. NN -> ( 0 ^ N ) = ( ( 1 + -u 1 ) ^ N ) ) | 
						
							| 6 |  | 0exp |  |-  ( N e. NN -> ( 0 ^ N ) = 0 ) | 
						
							| 7 | 1 | negcld |  |-  ( N e. NN -> -u 1 e. CC ) | 
						
							| 8 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 9 |  | binom |  |-  ( ( 1 e. CC /\ -u 1 e. CC /\ N e. NN0 ) -> ( ( 1 + -u 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) ) | 
						
							| 10 | 1 7 8 9 | syl3anc |  |-  ( N e. NN -> ( ( 1 + -u 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) ) | 
						
							| 11 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 12 |  | elfzelz |  |-  ( k e. ( 0 ... N ) -> k e. ZZ ) | 
						
							| 13 |  | zsubcl |  |-  ( ( N e. ZZ /\ k e. ZZ ) -> ( N - k ) e. ZZ ) | 
						
							| 14 | 11 12 13 | syl2an |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( N - k ) e. ZZ ) | 
						
							| 15 |  | 1exp |  |-  ( ( N - k ) e. ZZ -> ( 1 ^ ( N - k ) ) = 1 ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( 1 ^ ( N - k ) ) = 1 ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) = ( 1 x. ( -u 1 ^ k ) ) ) | 
						
							| 18 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 19 | 18 | a1i |  |-  ( N e. NN -> -u 1 e. CC ) | 
						
							| 20 |  | elfznn0 |  |-  ( k e. ( 0 ... N ) -> k e. NN0 ) | 
						
							| 21 |  | expcl |  |-  ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) | 
						
							| 22 | 19 20 21 | syl2an |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( -u 1 ^ k ) e. CC ) | 
						
							| 23 | 22 | mullidd |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( 1 x. ( -u 1 ^ k ) ) = ( -u 1 ^ k ) ) | 
						
							| 24 | 17 23 | eqtrd |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) = ( -u 1 ^ k ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) = ( ( N _C k ) x. ( -u 1 ^ k ) ) ) | 
						
							| 26 |  | bccl |  |-  ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) | 
						
							| 27 | 8 12 26 | syl2an |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN0 ) | 
						
							| 28 | 27 | nn0cnd |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) | 
						
							| 29 | 28 22 | mulcomd |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( -u 1 ^ k ) ) = ( ( -u 1 ^ k ) x. ( N _C k ) ) ) | 
						
							| 30 | 25 29 | eqtrd |  |-  ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) = ( ( -u 1 ^ k ) x. ( N _C k ) ) ) | 
						
							| 31 | 30 | sumeq2dv |  |-  ( N e. NN -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) x. ( N _C k ) ) ) | 
						
							| 32 | 10 31 | eqtrd |  |-  ( N e. NN -> ( ( 1 + -u 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) x. ( N _C k ) ) ) | 
						
							| 33 | 5 6 32 | 3eqtr3rd |  |-  ( N e. NN -> sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) x. ( N _C k ) ) = 0 ) |