Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
2 |
|
negid |
|- ( 1 e. CC -> ( 1 + -u 1 ) = 0 ) |
3 |
2
|
eqcomd |
|- ( 1 e. CC -> 0 = ( 1 + -u 1 ) ) |
4 |
1 3
|
syl |
|- ( N e. NN -> 0 = ( 1 + -u 1 ) ) |
5 |
4
|
oveq1d |
|- ( N e. NN -> ( 0 ^ N ) = ( ( 1 + -u 1 ) ^ N ) ) |
6 |
|
0exp |
|- ( N e. NN -> ( 0 ^ N ) = 0 ) |
7 |
1
|
negcld |
|- ( N e. NN -> -u 1 e. CC ) |
8 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
9 |
|
binom |
|- ( ( 1 e. CC /\ -u 1 e. CC /\ N e. NN0 ) -> ( ( 1 + -u 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) ) |
10 |
1 7 8 9
|
syl3anc |
|- ( N e. NN -> ( ( 1 + -u 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) ) |
11 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
12 |
|
elfzelz |
|- ( k e. ( 0 ... N ) -> k e. ZZ ) |
13 |
|
zsubcl |
|- ( ( N e. ZZ /\ k e. ZZ ) -> ( N - k ) e. ZZ ) |
14 |
11 12 13
|
syl2an |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( N - k ) e. ZZ ) |
15 |
|
1exp |
|- ( ( N - k ) e. ZZ -> ( 1 ^ ( N - k ) ) = 1 ) |
16 |
14 15
|
syl |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( 1 ^ ( N - k ) ) = 1 ) |
17 |
16
|
oveq1d |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) = ( 1 x. ( -u 1 ^ k ) ) ) |
18 |
|
neg1cn |
|- -u 1 e. CC |
19 |
18
|
a1i |
|- ( N e. NN -> -u 1 e. CC ) |
20 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
21 |
|
expcl |
|- ( ( -u 1 e. CC /\ k e. NN0 ) -> ( -u 1 ^ k ) e. CC ) |
22 |
19 20 21
|
syl2an |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( -u 1 ^ k ) e. CC ) |
23 |
22
|
mulid2d |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( 1 x. ( -u 1 ^ k ) ) = ( -u 1 ^ k ) ) |
24 |
17 23
|
eqtrd |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) = ( -u 1 ^ k ) ) |
25 |
24
|
oveq2d |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) = ( ( N _C k ) x. ( -u 1 ^ k ) ) ) |
26 |
|
bccl |
|- ( ( N e. NN0 /\ k e. ZZ ) -> ( N _C k ) e. NN0 ) |
27 |
8 12 26
|
syl2an |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN0 ) |
28 |
27
|
nn0cnd |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) |
29 |
28 22
|
mulcomd |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( -u 1 ^ k ) ) = ( ( -u 1 ^ k ) x. ( N _C k ) ) ) |
30 |
25 29
|
eqtrd |
|- ( ( N e. NN /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) = ( ( -u 1 ^ k ) x. ( N _C k ) ) ) |
31 |
30
|
sumeq2dv |
|- ( N e. NN -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( ( 1 ^ ( N - k ) ) x. ( -u 1 ^ k ) ) ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) x. ( N _C k ) ) ) |
32 |
10 31
|
eqtrd |
|- ( N e. NN -> ( ( 1 + -u 1 ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) x. ( N _C k ) ) ) |
33 |
5 6 32
|
3eqtr3rd |
|- ( N e. NN -> sum_ k e. ( 0 ... N ) ( ( -u 1 ^ k ) x. ( N _C k ) ) = 0 ) |