Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
|
2 |
|
negid |
|
3 |
2
|
eqcomd |
|
4 |
1 3
|
syl |
|
5 |
4
|
oveq1d |
|
6 |
|
0exp |
|
7 |
1
|
negcld |
|
8 |
|
nnnn0 |
|
9 |
|
binom |
|
10 |
1 7 8 9
|
syl3anc |
|
11 |
|
nnz |
|
12 |
|
elfzelz |
|
13 |
|
zsubcl |
|
14 |
11 12 13
|
syl2an |
|
15 |
|
1exp |
|
16 |
14 15
|
syl |
|
17 |
16
|
oveq1d |
|
18 |
|
neg1cn |
|
19 |
18
|
a1i |
|
20 |
|
elfznn0 |
|
21 |
|
expcl |
|
22 |
19 20 21
|
syl2an |
|
23 |
22
|
mulid2d |
|
24 |
17 23
|
eqtrd |
|
25 |
24
|
oveq2d |
|
26 |
|
bccl |
|
27 |
8 12 26
|
syl2an |
|
28 |
27
|
nn0cnd |
|
29 |
28 22
|
mulcomd |
|
30 |
25 29
|
eqtrd |
|
31 |
30
|
sumeq2dv |
|
32 |
10 31
|
eqtrd |
|
33 |
5 6 32
|
3eqtr3rd |
|