| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1cnd |  | 
						
							| 2 |  | negid |  | 
						
							| 3 | 2 | eqcomd |  | 
						
							| 4 | 1 3 | syl |  | 
						
							| 5 | 4 | oveq1d |  | 
						
							| 6 |  | 0exp |  | 
						
							| 7 | 1 | negcld |  | 
						
							| 8 |  | nnnn0 |  | 
						
							| 9 |  | binom |  | 
						
							| 10 | 1 7 8 9 | syl3anc |  | 
						
							| 11 |  | nnz |  | 
						
							| 12 |  | elfzelz |  | 
						
							| 13 |  | zsubcl |  | 
						
							| 14 | 11 12 13 | syl2an |  | 
						
							| 15 |  | 1exp |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 | 16 | oveq1d |  | 
						
							| 18 |  | neg1cn |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 |  | elfznn0 |  | 
						
							| 21 |  | expcl |  | 
						
							| 22 | 19 20 21 | syl2an |  | 
						
							| 23 | 22 | mullidd |  | 
						
							| 24 | 17 23 | eqtrd |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 |  | bccl |  | 
						
							| 27 | 8 12 26 | syl2an |  | 
						
							| 28 | 27 | nn0cnd |  | 
						
							| 29 | 28 22 | mulcomd |  | 
						
							| 30 | 25 29 | eqtrd |  | 
						
							| 31 | 30 | sumeq2dv |  | 
						
							| 32 | 10 31 | eqtrd |  | 
						
							| 33 | 5 6 32 | 3eqtr3rd |  |