Metamath Proof Explorer


Theorem altgsumbc

Description: The sum of binomial coefficients for a fixed positive N with alternating signs is zero. Notice that this is not valid for N = 0 (since ( ( -u 1 ^ 0 ) x. ( 0 _C 0 ) ) = ( 1 x. 1 ) = 1 ). For a proof using Pascal's rule ( bcpascm1 ) instead of the binomial theorem ( binom ) , see altgsumbcALT . (Contributed by AV, 13-Sep-2019)

Ref Expression
Assertion altgsumbc N k = 0 N 1 k ( N k) = 0

Proof

Step Hyp Ref Expression
1 1cnd N 1
2 negid 1 1 + -1 = 0
3 2 eqcomd 1 0 = 1 + -1
4 1 3 syl N 0 = 1 + -1
5 4 oveq1d N 0 N = 1 + -1 N
6 0exp N 0 N = 0
7 1 negcld N 1
8 nnnn0 N N 0
9 binom 1 1 N 0 1 + -1 N = k = 0 N ( N k) 1 N k 1 k
10 1 7 8 9 syl3anc N 1 + -1 N = k = 0 N ( N k) 1 N k 1 k
11 nnz N N
12 elfzelz k 0 N k
13 zsubcl N k N k
14 11 12 13 syl2an N k 0 N N k
15 1exp N k 1 N k = 1
16 14 15 syl N k 0 N 1 N k = 1
17 16 oveq1d N k 0 N 1 N k 1 k = 1 1 k
18 neg1cn 1
19 18 a1i N 1
20 elfznn0 k 0 N k 0
21 expcl 1 k 0 1 k
22 19 20 21 syl2an N k 0 N 1 k
23 22 mulid2d N k 0 N 1 1 k = 1 k
24 17 23 eqtrd N k 0 N 1 N k 1 k = 1 k
25 24 oveq2d N k 0 N ( N k) 1 N k 1 k = ( N k) 1 k
26 bccl N 0 k ( N k) 0
27 8 12 26 syl2an N k 0 N ( N k) 0
28 27 nn0cnd N k 0 N ( N k)
29 28 22 mulcomd N k 0 N ( N k) 1 k = 1 k ( N k)
30 25 29 eqtrd N k 0 N ( N k) 1 N k 1 k = 1 k ( N k)
31 30 sumeq2dv N k = 0 N ( N k) 1 N k 1 k = k = 0 N 1 k ( N k)
32 10 31 eqtrd N 1 + -1 N = k = 0 N 1 k ( N k)
33 5 6 32 3eqtr3rd N k = 0 N 1 k ( N k) = 0