Metamath Proof Explorer


Theorem altgsumbcALT

Description: Alternate proof of altgsumbc , using Pascal's rule ( bcpascm1 ) instead of the binomial theorem ( binom ). (Contributed by AV, 8-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion altgsumbcALT N k = 0 N 1 k ( N k) = 0

Proof

Step Hyp Ref Expression
1 elfzelz k 0 N k
2 bcpascm1 N k ( N 1 k) + ( N 1 k 1 ) = ( N k)
3 1 2 sylan2 N k 0 N ( N 1 k) + ( N 1 k 1 ) = ( N k)
4 3 eqcomd N k 0 N ( N k) = ( N 1 k) + ( N 1 k 1 )
5 4 oveq2d N k 0 N 1 k ( N k) = 1 k ( N 1 k) + ( N 1 k 1 )
6 ax-1cn 1
7 negcl 1 1
8 elfznn0 k 0 N k 0
9 expcl 1 k 0 1 k
10 7 8 9 syl2an 1 k 0 N 1 k
11 6 10 mpan k 0 N 1 k
12 11 adantl N k 0 N 1 k
13 nnm1nn0 N N 1 0
14 bccl N 1 0 k ( N 1 k) 0
15 14 nn0cnd N 1 0 k ( N 1 k)
16 13 1 15 syl2an N k 0 N ( N 1 k)
17 peano2zm k k 1
18 1 17 syl k 0 N k 1
19 bccl N 1 0 k 1 ( N 1 k 1 ) 0
20 19 nn0cnd N 1 0 k 1 ( N 1 k 1 )
21 13 18 20 syl2an N k 0 N ( N 1 k 1 )
22 12 16 21 adddid N k 0 N 1 k ( N 1 k) + ( N 1 k 1 ) = 1 k ( N 1 k) + 1 k ( N 1 k 1 )
23 5 22 eqtrd N k 0 N 1 k ( N k) = 1 k ( N 1 k) + 1 k ( N 1 k 1 )
24 23 sumeq2dv N k = 0 N 1 k ( N k) = k = 0 N 1 k ( N 1 k) + 1 k ( N 1 k 1 )
25 fzfid N 0 N Fin
26 neg1cn 1
27 26 a1i N 1
28 27 8 9 syl2an N k 0 N 1 k
29 28 16 mulcld N k 0 N 1 k ( N 1 k)
30 1z 1
31 30 a1i k 0 N 1
32 1 31 zsubcld k 0 N k 1
33 13 32 20 syl2an N k 0 N ( N 1 k 1 )
34 28 33 mulcld N k 0 N 1 k ( N 1 k 1 )
35 25 29 34 fsumadd N k = 0 N 1 k ( N 1 k) + 1 k ( N 1 k 1 ) = k = 0 N 1 k ( N 1 k) + k = 0 N 1 k ( N 1 k 1 )
36 30 a1i N 1
37 0zd N 0
38 nnz N N
39 oveq2 k = j 1 1 k = 1 j 1
40 oveq2 k = j 1 ( N 1 k) = ( N 1 j 1 )
41 39 40 oveq12d k = j 1 1 k ( N 1 k) = 1 j 1 ( N 1 j 1 )
42 36 37 38 29 41 fsumshft N k = 0 N 1 k ( N 1 k) = j = 0 + 1 N + 1 1 j 1 ( N 1 j 1 )
43 0p1e1 0 + 1 = 1
44 43 oveq1i 0 + 1 N + 1 = 1 N + 1
45 44 a1i N 0 + 1 N + 1 = 1 N + 1
46 45 sumeq1d N j = 0 + 1 N + 1 1 j 1 ( N 1 j 1 ) = j = 1 N + 1 1 j 1 ( N 1 j 1 )
47 elnnuz N N 1
48 47 biimpi N N 1
49 26 a1i N j 1 N + 1 1
50 elfznn j 1 N + 1 j
51 nnm1nn0 j j 1 0
52 50 51 syl j 1 N + 1 j 1 0
53 52 adantl N j 1 N + 1 j 1 0
54 49 53 expcld N j 1 N + 1 1 j 1
55 elfzelz j 1 N + 1 j
56 elfzel1 j 1 N + 1 1
57 55 56 zsubcld j 1 N + 1 j 1
58 bccl N 1 0 j 1 ( N 1 j 1 ) 0
59 58 nn0cnd N 1 0 j 1 ( N 1 j 1 )
60 13 57 59 syl2an N j 1 N + 1 ( N 1 j 1 )
61 54 60 mulcld N j 1 N + 1 1 j 1 ( N 1 j 1 )
62 oveq1 j = N + 1 j 1 = N + 1 - 1
63 62 oveq2d j = N + 1 1 j 1 = 1 N + 1 - 1
64 62 oveq2d j = N + 1 ( N 1 j 1 ) = ( N 1 N + 1 - 1 )
65 63 64 oveq12d j = N + 1 1 j 1 ( N 1 j 1 ) = 1 N + 1 - 1 ( N 1 N + 1 - 1 )
66 48 61 65 fsump1 N j = 1 N + 1 1 j 1 ( N 1 j 1 ) = j = 1 N 1 j 1 ( N 1 j 1 ) + 1 N + 1 - 1 ( N 1 N + 1 - 1 )
67 nncn N N
68 pncan1 N N + 1 - 1 = N
69 67 68 syl N N + 1 - 1 = N
70 nnnn0 N N 0
71 69 70 eqeltrd N N + 1 - 1 0
72 71 nn0zd N N + 1 - 1
73 nnre N N
74 ltm1 N N 1 < N
75 73 74 syl N N 1 < N
76 75 69 breqtrrd N N 1 < N + 1 - 1
77 76 olcd N N + 1 - 1 < 0 N 1 < N + 1 - 1
78 bcval4 N 1 0 N + 1 - 1 N + 1 - 1 < 0 N 1 < N + 1 - 1 ( N 1 N + 1 - 1 ) = 0
79 13 72 77 78 syl3anc N ( N 1 N + 1 - 1 ) = 0
80 79 oveq2d N 1 N + 1 - 1 ( N 1 N + 1 - 1 ) = 1 N + 1 - 1 0
81 27 71 expcld N 1 N + 1 - 1
82 81 mul01d N 1 N + 1 - 1 0 = 0
83 80 82 eqtrd N 1 N + 1 - 1 ( N 1 N + 1 - 1 ) = 0
84 83 oveq2d N j = 1 N 1 j 1 ( N 1 j 1 ) + 1 N + 1 - 1 ( N 1 N + 1 - 1 ) = j = 1 N 1 j 1 ( N 1 j 1 ) + 0
85 oveq1 j = k j 1 = k 1
86 85 oveq2d j = k 1 j 1 = 1 k 1
87 85 oveq2d j = k ( N 1 j 1 ) = ( N 1 k 1 )
88 86 87 oveq12d j = k 1 j 1 ( N 1 j 1 ) = 1 k 1 ( N 1 k 1 )
89 88 cbvsumv j = 1 N 1 j 1 ( N 1 j 1 ) = k = 1 N 1 k 1 ( N 1 k 1 )
90 89 a1i N j = 1 N 1 j 1 ( N 1 j 1 ) = k = 1 N 1 k 1 ( N 1 k 1 )
91 90 oveq1d N j = 1 N 1 j 1 ( N 1 j 1 ) + 0 = k = 1 N 1 k 1 ( N 1 k 1 ) + 0
92 fzfid N 1 N Fin
93 26 a1i N k 1 N 1
94 elfznn k 1 N k
95 nnm1nn0 k k 1 0
96 94 95 syl k 1 N k 1 0
97 96 adantl N k 1 N k 1 0
98 93 97 expcld N k 1 N 1 k 1
99 elfzelz k 1 N k
100 elfzel1 k 1 N 1
101 99 100 zsubcld k 1 N k 1
102 13 101 19 syl2an N k 1 N ( N 1 k 1 ) 0
103 102 nn0cnd N k 1 N ( N 1 k 1 )
104 98 103 mulcld N k 1 N 1 k 1 ( N 1 k 1 )
105 92 104 fsumcl N k = 1 N 1 k 1 ( N 1 k 1 )
106 105 addid1d N k = 1 N 1 k 1 ( N 1 k 1 ) + 0 = k = 1 N 1 k 1 ( N 1 k 1 )
107 91 106 eqtrd N j = 1 N 1 j 1 ( N 1 j 1 ) + 0 = k = 1 N 1 k 1 ( N 1 k 1 )
108 66 84 107 3eqtrd N j = 1 N + 1 1 j 1 ( N 1 j 1 ) = k = 1 N 1 k 1 ( N 1 k 1 )
109 42 46 108 3eqtrd N k = 0 N 1 k ( N 1 k) = k = 1 N 1 k 1 ( N 1 k 1 )
110 elnn0uz N 0 N 0
111 70 110 sylib N N 0
112 oveq2 k = 0 1 k = 1 0
113 oveq1 k = 0 k 1 = 0 1
114 113 oveq2d k = 0 ( N 1 k 1 ) = ( N 1 0 1 )
115 112 114 oveq12d k = 0 1 k ( N 1 k 1 ) = 1 0 ( N 1 0 1 )
116 111 34 115 fsum1p N k = 0 N 1 k ( N 1 k 1 ) = 1 0 ( N 1 0 1 ) + k = 0 + 1 N 1 k ( N 1 k 1 )
117 27 exp0d N 1 0 = 1
118 0z 0
119 zsubcl 0 1 0 1
120 118 30 119 mp2an 0 1
121 120 a1i N 0 1
122 0re 0
123 ltm1 0 0 1 < 0
124 122 123 mp1i N 0 1 < 0
125 124 orcd N 0 1 < 0 N 1 < 0 1
126 bcval4 N 1 0 0 1 0 1 < 0 N 1 < 0 1 ( N 1 0 1 ) = 0
127 13 121 125 126 syl3anc N ( N 1 0 1 ) = 0
128 117 127 oveq12d N 1 0 ( N 1 0 1 ) = 1 0
129 6 a1i N 1
130 129 mul01d N 1 0 = 0
131 128 130 eqtrd N 1 0 ( N 1 0 1 ) = 0
132 43 a1i N 0 + 1 = 1
133 132 oveq1d N 0 + 1 N = 1 N
134 99 zcnd k 1 N k
135 npcan1 k k - 1 + 1 = k
136 135 eqcomd k k = k - 1 + 1
137 134 136 syl k 1 N k = k - 1 + 1
138 137 adantl N k 1 N k = k - 1 + 1
139 138 oveq2d N k 1 N 1 k = 1 k - 1 + 1
140 expp1 1 k 1 0 1 k - 1 + 1 = 1 k 1 -1
141 27 96 140 syl2an N k 1 N 1 k - 1 + 1 = 1 k 1 -1
142 139 141 eqtrd N k 1 N 1 k = 1 k 1 -1
143 142 oveq1d N k 1 N 1 k ( N 1 k 1 ) = 1 k 1 -1 ( N 1 k 1 )
144 98 93 mulcomd N k 1 N 1 k 1 -1 = -1 1 k 1
145 144 oveq1d N k 1 N 1 k 1 -1 ( N 1 k 1 ) = -1 1 k 1 ( N 1 k 1 )
146 93 98 103 mulassd N k 1 N -1 1 k 1 ( N 1 k 1 ) = -1 1 k 1 ( N 1 k 1 )
147 143 145 146 3eqtrd N k 1 N 1 k ( N 1 k 1 ) = -1 1 k 1 ( N 1 k 1 )
148 133 147 sumeq12rdv N k = 0 + 1 N 1 k ( N 1 k 1 ) = k = 1 N -1 1 k 1 ( N 1 k 1 )
149 92 27 104 fsummulc2 N -1 k = 1 N 1 k 1 ( N 1 k 1 ) = k = 1 N -1 1 k 1 ( N 1 k 1 )
150 148 149 eqtr4d N k = 0 + 1 N 1 k ( N 1 k 1 ) = -1 k = 1 N 1 k 1 ( N 1 k 1 )
151 131 150 oveq12d N 1 0 ( N 1 0 1 ) + k = 0 + 1 N 1 k ( N 1 k 1 ) = 0 + -1 k = 1 N 1 k 1 ( N 1 k 1 )
152 27 105 mulcld N -1 k = 1 N 1 k 1 ( N 1 k 1 )
153 152 addid2d N 0 + -1 k = 1 N 1 k 1 ( N 1 k 1 ) = -1 k = 1 N 1 k 1 ( N 1 k 1 )
154 116 151 153 3eqtrd N k = 0 N 1 k ( N 1 k 1 ) = -1 k = 1 N 1 k 1 ( N 1 k 1 )
155 109 154 oveq12d N k = 0 N 1 k ( N 1 k) + k = 0 N 1 k ( N 1 k 1 ) = k = 1 N 1 k 1 ( N 1 k 1 ) + -1 k = 1 N 1 k 1 ( N 1 k 1 )
156 35 155 eqtrd N k = 0 N 1 k ( N 1 k) + 1 k ( N 1 k 1 ) = k = 1 N 1 k 1 ( N 1 k 1 ) + -1 k = 1 N 1 k 1 ( N 1 k 1 )
157 105 mulm1d N -1 k = 1 N 1 k 1 ( N 1 k 1 ) = k = 1 N 1 k 1 ( N 1 k 1 )
158 157 oveq2d N k = 1 N 1 k 1 ( N 1 k 1 ) + -1 k = 1 N 1 k 1 ( N 1 k 1 ) = k = 1 N 1 k 1 ( N 1 k 1 ) + k = 1 N 1 k 1 ( N 1 k 1 )
159 105 negidd N k = 1 N 1 k 1 ( N 1 k 1 ) + k = 1 N 1 k 1 ( N 1 k 1 ) = 0
160 158 159 eqtrd N k = 1 N 1 k 1 ( N 1 k 1 ) + -1 k = 1 N 1 k 1 ( N 1 k 1 ) = 0
161 24 156 160 3eqtrd N k = 0 N 1 k ( N k) = 0