| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
| 2 |
|
bcpascm1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ℤ ) → ( ( ( 𝑁 − 1 ) C 𝑘 ) + ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( 𝑁 C 𝑘 ) ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝑁 − 1 ) C 𝑘 ) + ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( 𝑁 C 𝑘 ) ) |
| 4 |
3
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝑘 ) = ( ( ( 𝑁 − 1 ) C 𝑘 ) + ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 5 |
4
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) = ( ( - 1 ↑ 𝑘 ) · ( ( ( 𝑁 − 1 ) C 𝑘 ) + ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 6 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 7 |
|
negcl |
⊢ ( 1 ∈ ℂ → - 1 ∈ ℂ ) |
| 8 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
| 9 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
| 10 |
7 8 9
|
syl2an |
⊢ ( ( 1 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
| 11 |
6 10
|
mpan |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
| 13 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 14 |
|
bccl |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑁 − 1 ) C 𝑘 ) ∈ ℕ0 ) |
| 15 |
14
|
nn0cnd |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( ( 𝑁 − 1 ) C 𝑘 ) ∈ ℂ ) |
| 16 |
13 1 15
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 1 ) C 𝑘 ) ∈ ℂ ) |
| 17 |
|
peano2zm |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 − 1 ) ∈ ℤ ) |
| 18 |
1 17
|
syl |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 19 |
|
bccl |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑘 − 1 ) ∈ ℤ ) → ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
| 20 |
19
|
nn0cnd |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑘 − 1 ) ∈ ℤ ) → ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 21 |
13 18 20
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 22 |
12 16 21
|
adddid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( - 1 ↑ 𝑘 ) · ( ( ( 𝑁 − 1 ) C 𝑘 ) + ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) = ( ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 23 |
5 22
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) = ( ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 24 |
23
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 25 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 0 ... 𝑁 ) ∈ Fin ) |
| 26 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
| 27 |
26
|
a1i |
⊢ ( 𝑁 ∈ ℕ → - 1 ∈ ℂ ) |
| 28 |
27 8 9
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
| 29 |
28 16
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) ∈ ℂ ) |
| 30 |
|
1z |
⊢ 1 ∈ ℤ |
| 31 |
30
|
a1i |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 1 ∈ ℤ ) |
| 32 |
1 31
|
zsubcld |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 33 |
13 32 20
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 34 |
28 33
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 35 |
25 29 34
|
fsumadd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) + Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 36 |
30
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℤ ) |
| 37 |
|
0zd |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℤ ) |
| 38 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 39 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ ( 𝑗 − 1 ) ) ) |
| 40 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( 𝑁 − 1 ) C 𝑘 ) = ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) |
| 41 |
39 40
|
oveq12d |
⊢ ( 𝑘 = ( 𝑗 − 1 ) → ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) = ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) ) |
| 42 |
36 37 38 29 41
|
fsumshft |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) = Σ 𝑗 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) ) |
| 43 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 44 |
43
|
oveq1i |
⊢ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) = ( 1 ... ( 𝑁 + 1 ) ) |
| 45 |
44
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) = ( 1 ... ( 𝑁 + 1 ) ) ) |
| 46 |
45
|
sumeq1d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( ( 0 + 1 ) ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) = Σ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) ) |
| 47 |
|
elnnuz |
⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 48 |
47
|
biimpi |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 49 |
26
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → - 1 ∈ ℂ ) |
| 50 |
|
elfznn |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑗 ∈ ℕ ) |
| 51 |
|
nnm1nn0 |
⊢ ( 𝑗 ∈ ℕ → ( 𝑗 − 1 ) ∈ ℕ0 ) |
| 52 |
50 51
|
syl |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝑗 − 1 ) ∈ ℕ0 ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ℕ0 ) |
| 54 |
49 53
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( - 1 ↑ ( 𝑗 − 1 ) ) ∈ ℂ ) |
| 55 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 𝑗 ∈ ℤ ) |
| 56 |
|
elfzel1 |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) → 1 ∈ ℤ ) |
| 57 |
55 56
|
zsubcld |
⊢ ( 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) → ( 𝑗 − 1 ) ∈ ℤ ) |
| 58 |
|
bccl |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 − 1 ) ∈ ℤ ) → ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ∈ ℕ0 ) |
| 59 |
58
|
nn0cnd |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 𝑗 − 1 ) ∈ ℤ ) → ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ∈ ℂ ) |
| 60 |
13 57 59
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ∈ ℂ ) |
| 61 |
54 60
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) ∈ ℂ ) |
| 62 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( 𝑗 − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( - 1 ↑ ( 𝑗 − 1 ) ) = ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) |
| 64 |
62
|
oveq2d |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) = ( ( 𝑁 − 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) |
| 65 |
63 64
|
oveq12d |
⊢ ( 𝑗 = ( 𝑁 + 1 ) → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) = ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) · ( ( 𝑁 − 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) ) |
| 66 |
48 61 65
|
fsump1 |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) + ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) · ( ( 𝑁 − 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) ) ) |
| 67 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 68 |
|
pncan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 69 |
67 68
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 70 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 71 |
69 70
|
eqeltrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) ∈ ℕ0 ) |
| 72 |
71
|
nn0zd |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) ∈ ℤ ) |
| 73 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 74 |
|
ltm1 |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 − 1 ) < 𝑁 ) |
| 75 |
73 74
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) < 𝑁 ) |
| 76 |
75 69
|
breqtrrd |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) < ( ( 𝑁 + 1 ) − 1 ) ) |
| 77 |
76
|
olcd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) − 1 ) < 0 ∨ ( 𝑁 − 1 ) < ( ( 𝑁 + 1 ) − 1 ) ) ) |
| 78 |
|
bcval4 |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) − 1 ) ∈ ℤ ∧ ( ( ( 𝑁 + 1 ) − 1 ) < 0 ∨ ( 𝑁 − 1 ) < ( ( 𝑁 + 1 ) − 1 ) ) ) → ( ( 𝑁 − 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) = 0 ) |
| 79 |
13 72 77 78
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) = 0 ) |
| 80 |
79
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) · ( ( 𝑁 − 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) = ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) · 0 ) ) |
| 81 |
27 71
|
expcld |
⊢ ( 𝑁 ∈ ℕ → ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ∈ ℂ ) |
| 82 |
81
|
mul01d |
⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) · 0 ) = 0 ) |
| 83 |
80 82
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) · ( ( 𝑁 − 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) = 0 ) |
| 84 |
83
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) + ( ( - 1 ↑ ( ( 𝑁 + 1 ) − 1 ) ) · ( ( 𝑁 − 1 ) C ( ( 𝑁 + 1 ) − 1 ) ) ) ) = ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) + 0 ) ) |
| 85 |
|
oveq1 |
⊢ ( 𝑗 = 𝑘 → ( 𝑗 − 1 ) = ( 𝑘 − 1 ) ) |
| 86 |
85
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( - 1 ↑ ( 𝑗 − 1 ) ) = ( - 1 ↑ ( 𝑘 − 1 ) ) ) |
| 87 |
85
|
oveq2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) = ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) |
| 88 |
86 87
|
oveq12d |
⊢ ( 𝑗 = 𝑘 → ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) = ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 89 |
88
|
cbvsumv |
⊢ Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) |
| 90 |
89
|
a1i |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 91 |
90
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) + 0 ) = ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) + 0 ) ) |
| 92 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) |
| 93 |
26
|
a1i |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → - 1 ∈ ℂ ) |
| 94 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) |
| 95 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 96 |
94 95
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 97 |
96
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 98 |
93 97
|
expcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( - 1 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 99 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
| 100 |
|
elfzel1 |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 1 ∈ ℤ ) |
| 101 |
99 100
|
zsubcld |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 102 |
13 101 19
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ∈ ℕ0 ) |
| 103 |
102
|
nn0cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 104 |
98 103
|
mulcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 105 |
92 104
|
fsumcl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 106 |
105
|
addridd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) + 0 ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 107 |
91 106
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) + 0 ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 108 |
66 84 107
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 1 ... ( 𝑁 + 1 ) ) ( ( - 1 ↑ ( 𝑗 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑗 − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 109 |
42 46 108
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 110 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 111 |
70 110
|
sylib |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 112 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ 0 ) ) |
| 113 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 − 1 ) = ( 0 − 1 ) ) |
| 114 |
113
|
oveq2d |
⊢ ( 𝑘 = 0 → ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) = ( ( 𝑁 − 1 ) C ( 0 − 1 ) ) ) |
| 115 |
112 114
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( ( - 1 ↑ 0 ) · ( ( 𝑁 − 1 ) C ( 0 − 1 ) ) ) ) |
| 116 |
111 34 115
|
fsum1p |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( ( ( - 1 ↑ 0 ) · ( ( 𝑁 − 1 ) C ( 0 − 1 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 117 |
27
|
exp0d |
⊢ ( 𝑁 ∈ ℕ → ( - 1 ↑ 0 ) = 1 ) |
| 118 |
|
0z |
⊢ 0 ∈ ℤ |
| 119 |
|
zsubcl |
⊢ ( ( 0 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 0 − 1 ) ∈ ℤ ) |
| 120 |
118 30 119
|
mp2an |
⊢ ( 0 − 1 ) ∈ ℤ |
| 121 |
120
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 0 − 1 ) ∈ ℤ ) |
| 122 |
|
0re |
⊢ 0 ∈ ℝ |
| 123 |
|
ltm1 |
⊢ ( 0 ∈ ℝ → ( 0 − 1 ) < 0 ) |
| 124 |
122 123
|
mp1i |
⊢ ( 𝑁 ∈ ℕ → ( 0 − 1 ) < 0 ) |
| 125 |
124
|
orcd |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 − 1 ) < 0 ∨ ( 𝑁 − 1 ) < ( 0 − 1 ) ) ) |
| 126 |
|
bcval4 |
⊢ ( ( ( 𝑁 − 1 ) ∈ ℕ0 ∧ ( 0 − 1 ) ∈ ℤ ∧ ( ( 0 − 1 ) < 0 ∨ ( 𝑁 − 1 ) < ( 0 − 1 ) ) ) → ( ( 𝑁 − 1 ) C ( 0 − 1 ) ) = 0 ) |
| 127 |
13 121 125 126
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) C ( 0 − 1 ) ) = 0 ) |
| 128 |
117 127
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ 0 ) · ( ( 𝑁 − 1 ) C ( 0 − 1 ) ) ) = ( 1 · 0 ) ) |
| 129 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
| 130 |
129
|
mul01d |
⊢ ( 𝑁 ∈ ℕ → ( 1 · 0 ) = 0 ) |
| 131 |
128 130
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ 0 ) · ( ( 𝑁 − 1 ) C ( 0 − 1 ) ) ) = 0 ) |
| 132 |
43
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 0 + 1 ) = 1 ) |
| 133 |
132
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( 0 + 1 ) ... 𝑁 ) = ( 1 ... 𝑁 ) ) |
| 134 |
99
|
zcnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
| 135 |
|
npcan1 |
⊢ ( 𝑘 ∈ ℂ → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 136 |
135
|
eqcomd |
⊢ ( 𝑘 ∈ ℂ → 𝑘 = ( ( 𝑘 − 1 ) + 1 ) ) |
| 137 |
134 136
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 = ( ( 𝑘 − 1 ) + 1 ) ) |
| 138 |
137
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 = ( ( 𝑘 − 1 ) + 1 ) ) |
| 139 |
138
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( - 1 ↑ 𝑘 ) = ( - 1 ↑ ( ( 𝑘 − 1 ) + 1 ) ) ) |
| 140 |
|
expp1 |
⊢ ( ( - 1 ∈ ℂ ∧ ( 𝑘 − 1 ) ∈ ℕ0 ) → ( - 1 ↑ ( ( 𝑘 − 1 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑘 − 1 ) ) · - 1 ) ) |
| 141 |
27 96 140
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( - 1 ↑ ( ( 𝑘 − 1 ) + 1 ) ) = ( ( - 1 ↑ ( 𝑘 − 1 ) ) · - 1 ) ) |
| 142 |
139 141
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( - 1 ↑ 𝑘 ) = ( ( - 1 ↑ ( 𝑘 − 1 ) ) · - 1 ) ) |
| 143 |
142
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · - 1 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 144 |
98 93
|
mulcomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( - 1 ↑ ( 𝑘 − 1 ) ) · - 1 ) = ( - 1 · ( - 1 ↑ ( 𝑘 − 1 ) ) ) ) |
| 145 |
144
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( ( - 1 ↑ ( 𝑘 − 1 ) ) · - 1 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( ( - 1 · ( - 1 ↑ ( 𝑘 − 1 ) ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 146 |
93 98 103
|
mulassd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( - 1 · ( - 1 ↑ ( 𝑘 − 1 ) ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( - 1 · ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 147 |
143 145 146
|
3eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( - 1 · ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 148 |
133 147
|
sumeq12rdv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 1 · ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 149 |
92 27 104
|
fsummulc2 |
⊢ ( 𝑁 ∈ ℕ → ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( - 1 · ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 150 |
148 149
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 151 |
131 150
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( - 1 ↑ 0 ) · ( ( 𝑁 − 1 ) C ( 0 − 1 ) ) ) + Σ 𝑘 ∈ ( ( 0 + 1 ) ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) = ( 0 + ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) ) |
| 152 |
27 105
|
mulcld |
⊢ ( 𝑁 ∈ ℕ → ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ∈ ℂ ) |
| 153 |
152
|
addlidd |
⊢ ( 𝑁 ∈ ℕ → ( 0 + ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) = ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 154 |
116 151 153
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) = ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 155 |
109 154
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) + Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) + ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) ) |
| 156 |
35 155
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C 𝑘 ) ) + ( ( - 1 ↑ 𝑘 ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) + ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) ) |
| 157 |
105
|
mulm1d |
⊢ ( 𝑁 ∈ ℕ → ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) = - Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) |
| 158 |
157
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) + ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) + - Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) |
| 159 |
105
|
negidd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) + - Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) = 0 ) |
| 160 |
158 159
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) + ( - 1 · Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( ( - 1 ↑ ( 𝑘 − 1 ) ) · ( ( 𝑁 − 1 ) C ( 𝑘 − 1 ) ) ) ) ) = 0 ) |
| 161 |
24 156 160
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) = 0 ) |