Step |
Hyp |
Ref |
Expression |
1 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
2 |
|
negid |
⊢ ( 1 ∈ ℂ → ( 1 + - 1 ) = 0 ) |
3 |
2
|
eqcomd |
⊢ ( 1 ∈ ℂ → 0 = ( 1 + - 1 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝑁 ∈ ℕ → 0 = ( 1 + - 1 ) ) |
5 |
4
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = ( ( 1 + - 1 ) ↑ 𝑁 ) ) |
6 |
|
0exp |
⊢ ( 𝑁 ∈ ℕ → ( 0 ↑ 𝑁 ) = 0 ) |
7 |
1
|
negcld |
⊢ ( 𝑁 ∈ ℕ → - 1 ∈ ℂ ) |
8 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
9 |
|
binom |
⊢ ( ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 + - 1 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( - 1 ↑ 𝑘 ) ) ) ) |
10 |
1 7 8 9
|
syl3anc |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + - 1 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( - 1 ↑ 𝑘 ) ) ) ) |
11 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
12 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
13 |
|
zsubcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
14 |
11 12 13
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 − 𝑘 ) ∈ ℤ ) |
15 |
|
1exp |
⊢ ( ( 𝑁 − 𝑘 ) ∈ ℤ → ( 1 ↑ ( 𝑁 − 𝑘 ) ) = 1 ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 1 ↑ ( 𝑁 − 𝑘 ) ) = 1 ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( - 1 ↑ 𝑘 ) ) = ( 1 · ( - 1 ↑ 𝑘 ) ) ) |
18 |
|
neg1cn |
⊢ - 1 ∈ ℂ |
19 |
18
|
a1i |
⊢ ( 𝑁 ∈ ℕ → - 1 ∈ ℂ ) |
20 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
21 |
|
expcl |
⊢ ( ( - 1 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
22 |
19 20 21
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( - 1 ↑ 𝑘 ) ∈ ℂ ) |
23 |
22
|
mulid2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 1 · ( - 1 ↑ 𝑘 ) ) = ( - 1 ↑ 𝑘 ) ) |
24 |
17 23
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( - 1 ↑ 𝑘 ) ) = ( - 1 ↑ 𝑘 ) ) |
25 |
24
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( - 1 ↑ 𝑘 ) ) ) = ( ( 𝑁 C 𝑘 ) · ( - 1 ↑ 𝑘 ) ) ) |
26 |
|
bccl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ℤ ) → ( 𝑁 C 𝑘 ) ∈ ℕ0 ) |
27 |
8 12 26
|
syl2an |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝑘 ) ∈ ℕ0 ) |
28 |
27
|
nn0cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝑘 ) ∈ ℂ ) |
29 |
28 22
|
mulcomd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( - 1 ↑ 𝑘 ) ) = ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) ) |
30 |
25 29
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( - 1 ↑ 𝑘 ) ) ) = ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) ) |
31 |
30
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( ( 1 ↑ ( 𝑁 − 𝑘 ) ) · ( - 1 ↑ 𝑘 ) ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) ) |
32 |
10 31
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + - 1 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) ) |
33 |
5 6 32
|
3eqtr3rd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 ) · ( 𝑁 C 𝑘 ) ) = 0 ) |