| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1cnd | ⊢ ( 𝑁  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 2 |  | negid | ⊢ ( 1  ∈  ℂ  →  ( 1  +  - 1 )  =  0 ) | 
						
							| 3 | 2 | eqcomd | ⊢ ( 1  ∈  ℂ  →  0  =  ( 1  +  - 1 ) ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝑁  ∈  ℕ  →  0  =  ( 1  +  - 1 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑁  ∈  ℕ  →  ( 0 ↑ 𝑁 )  =  ( ( 1  +  - 1 ) ↑ 𝑁 ) ) | 
						
							| 6 |  | 0exp | ⊢ ( 𝑁  ∈  ℕ  →  ( 0 ↑ 𝑁 )  =  0 ) | 
						
							| 7 | 1 | negcld | ⊢ ( 𝑁  ∈  ℕ  →  - 1  ∈  ℂ ) | 
						
							| 8 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 |  | binom | ⊢ ( ( 1  ∈  ℂ  ∧  - 1  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 1  +  - 1 ) ↑ 𝑁 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( - 1 ↑ 𝑘 ) ) ) ) | 
						
							| 10 | 1 7 8 9 | syl3anc | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  +  - 1 ) ↑ 𝑁 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( - 1 ↑ 𝑘 ) ) ) ) | 
						
							| 11 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 12 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℤ ) | 
						
							| 13 |  | zsubcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑘  ∈  ℤ )  →  ( 𝑁  −  𝑘 )  ∈  ℤ ) | 
						
							| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑁  −  𝑘 )  ∈  ℤ ) | 
						
							| 15 |  | 1exp | ⊢ ( ( 𝑁  −  𝑘 )  ∈  ℤ  →  ( 1 ↑ ( 𝑁  −  𝑘 ) )  =  1 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 1 ↑ ( 𝑁  −  𝑘 ) )  =  1 ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( - 1 ↑ 𝑘 ) )  =  ( 1  ·  ( - 1 ↑ 𝑘 ) ) ) | 
						
							| 18 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 19 | 18 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  - 1  ∈  ℂ ) | 
						
							| 20 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 21 |  | expcl | ⊢ ( ( - 1  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( - 1 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 22 | 19 20 21 | syl2an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( - 1 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 23 | 22 | mullidd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 1  ·  ( - 1 ↑ 𝑘 ) )  =  ( - 1 ↑ 𝑘 ) ) | 
						
							| 24 | 17 23 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( - 1 ↑ 𝑘 ) )  =  ( - 1 ↑ 𝑘 ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑁 C 𝑘 )  ·  ( ( 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( - 1 ↑ 𝑘 ) ) )  =  ( ( 𝑁 C 𝑘 )  ·  ( - 1 ↑ 𝑘 ) ) ) | 
						
							| 26 |  | bccl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑘  ∈  ℤ )  →  ( 𝑁 C 𝑘 )  ∈  ℕ0 ) | 
						
							| 27 | 8 12 26 | syl2an | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑁 C 𝑘 )  ∈  ℕ0 ) | 
						
							| 28 | 27 | nn0cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑁 C 𝑘 )  ∈  ℂ ) | 
						
							| 29 | 28 22 | mulcomd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑁 C 𝑘 )  ·  ( - 1 ↑ 𝑘 ) )  =  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑁 C 𝑘 ) ) ) | 
						
							| 30 | 25 29 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑁 C 𝑘 )  ·  ( ( 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( - 1 ↑ 𝑘 ) ) )  =  ( ( - 1 ↑ 𝑘 )  ·  ( 𝑁 C 𝑘 ) ) ) | 
						
							| 31 | 30 | sumeq2dv | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 )  ·  ( ( 1 ↑ ( 𝑁  −  𝑘 ) )  ·  ( - 1 ↑ 𝑘 ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑁 C 𝑘 ) ) ) | 
						
							| 32 | 10 31 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 1  +  - 1 ) ↑ 𝑁 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑁 C 𝑘 ) ) ) | 
						
							| 33 | 5 6 32 | 3eqtr3rd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( - 1 ↑ 𝑘 )  ·  ( 𝑁 C 𝑘 ) )  =  0 ) |