Metamath Proof Explorer


Theorem bcval4

Description: Value of the binomial coefficient, N choose K , outside of its standard domain. Remark in Gleason p. 295. (Contributed by NM, 14-Jul-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion bcval4 N 0 K K < 0 N < K ( N K) = 0

Proof

Step Hyp Ref Expression
1 elfzle1 K 0 N 0 K
2 0re 0
3 elfzelz K 0 N K
4 3 zred K 0 N K
5 lenlt 0 K 0 K ¬ K < 0
6 2 4 5 sylancr K 0 N 0 K ¬ K < 0
7 1 6 mpbid K 0 N ¬ K < 0
8 7 adantl N 0 K 0 N ¬ K < 0
9 elfzle2 K 0 N K N
10 9 adantl N 0 K 0 N K N
11 nn0re N 0 N
12 lenlt K N K N ¬ N < K
13 4 11 12 syl2anr N 0 K 0 N K N ¬ N < K
14 10 13 mpbid N 0 K 0 N ¬ N < K
15 ioran ¬ K < 0 N < K ¬ K < 0 ¬ N < K
16 8 14 15 sylanbrc N 0 K 0 N ¬ K < 0 N < K
17 16 ex N 0 K 0 N ¬ K < 0 N < K
18 17 adantr N 0 K K 0 N ¬ K < 0 N < K
19 18 con2d N 0 K K < 0 N < K ¬ K 0 N
20 19 3impia N 0 K K < 0 N < K ¬ K 0 N
21 bcval3 N 0 K ¬ K 0 N ( N K) = 0
22 20 21 syld3an3 N 0 K K < 0 N < K ( N K) = 0