Metamath Proof Explorer


Theorem bcsiHIL

Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses bcs.1
|- A e. ~H
bcs.2
|- B e. ~H
Assertion bcsiHIL
|- ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) )

Proof

Step Hyp Ref Expression
1 bcs.1
 |-  A e. ~H
2 bcs.2
 |-  B e. ~H
3 df-hba
 |-  ~H = ( BaseSet ` <. <. +h , .h >. , normh >. )
4 eqid
 |-  <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >.
5 4 hhnm
 |-  normh = ( normCV ` <. <. +h , .h >. , normh >. )
6 4 hhip
 |-  .ih = ( .iOLD ` <. <. +h , .h >. , normh >. )
7 4 hhph
 |-  <. <. +h , .h >. , normh >. e. CPreHilOLD
8 3 5 6 7 1 2 siii
 |-  ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) )