Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bcs.1 | ⊢ 𝐴 ∈ ℋ | |
| bcs.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | bcsiHIL | ⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bcs.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | bcs.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | df-hba | ⊢ ℋ = ( BaseSet ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) | |
| 4 | eqid | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 5 | 4 | hhnm | ⊢ normℎ = ( normCV ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 6 | 4 | hhip | ⊢ ·ih = ( ·𝑖OLD ‘ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ) |
| 7 | 4 | hhph | ⊢ 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 ∈ CPreHilOLD |
| 8 | 3 5 6 7 1 2 | siii | ⊢ ( abs ‘ ( 𝐴 ·ih 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) · ( normℎ ‘ 𝐵 ) ) |