Metamath Proof Explorer


Theorem hhip

Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
Assertion hhip ·ih = ( ·𝑖OLD𝑈 )

Proof

Step Hyp Ref Expression
1 hhnv.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 polid ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih 𝑦 ) = ( ( ( ( ( norm ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) − ( ( norm ‘ ( 𝑥 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( norm ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ↑ 2 ) − ( ( norm ‘ ( 𝑥 ( i · 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) )
3 1 hhnv 𝑈 ∈ NrmCVec
4 1 hhba ℋ = ( BaseSet ‘ 𝑈 )
5 1 hhva + = ( +𝑣𝑈 )
6 1 hhsm · = ( ·𝑠OLD𝑈 )
7 1 hhnm norm = ( normCV𝑈 )
8 eqid ( ·𝑖OLD𝑈 ) = ( ·𝑖OLD𝑈 )
9 1 hhvs = ( −𝑣𝑈 )
10 4 5 6 7 8 9 ipval3 ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ( ·𝑖OLD𝑈 ) 𝑦 ) = ( ( ( ( ( norm ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) − ( ( norm ‘ ( 𝑥 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( norm ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ↑ 2 ) − ( ( norm ‘ ( 𝑥 ( i · 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) )
11 3 10 mp3an1 ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ( ·𝑖OLD𝑈 ) 𝑦 ) = ( ( ( ( ( norm ‘ ( 𝑥 + 𝑦 ) ) ↑ 2 ) − ( ( norm ‘ ( 𝑥 𝑦 ) ) ↑ 2 ) ) + ( i · ( ( ( norm ‘ ( 𝑥 + ( i · 𝑦 ) ) ) ↑ 2 ) − ( ( norm ‘ ( 𝑥 ( i · 𝑦 ) ) ) ↑ 2 ) ) ) ) / 4 ) )
12 2 11 eqtr4d ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑈 ) 𝑦 ) )
13 12 rgen2 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑈 ) 𝑦 )
14 ax-hfi ·ih : ( ℋ × ℋ ) ⟶ ℂ
15 4 8 ipf ( 𝑈 ∈ NrmCVec → ( ·𝑖OLD𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ )
16 3 15 ax-mp ( ·𝑖OLD𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ
17 ffn ( ·ih : ( ℋ × ℋ ) ⟶ ℂ → ·ih Fn ( ℋ × ℋ ) )
18 ffn ( ( ·𝑖OLD𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ → ( ·𝑖OLD𝑈 ) Fn ( ℋ × ℋ ) )
19 eqfnov2 ( ( ·ih Fn ( ℋ × ℋ ) ∧ ( ·𝑖OLD𝑈 ) Fn ( ℋ × ℋ ) ) → ( ·ih = ( ·𝑖OLD𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑈 ) 𝑦 ) ) )
20 17 18 19 syl2an ( ( ·ih : ( ℋ × ℋ ) ⟶ ℂ ∧ ( ·𝑖OLD𝑈 ) : ( ℋ × ℋ ) ⟶ ℂ ) → ( ·ih = ( ·𝑖OLD𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑈 ) 𝑦 ) ) )
21 14 16 20 mp2an ( ·ih = ( ·𝑖OLD𝑈 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = ( 𝑥 ( ·𝑖OLD𝑈 ) 𝑦 ) )
22 13 21 mpbir ·ih = ( ·𝑖OLD𝑈 )