Metamath Proof Explorer


Theorem hhip

Description: The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypothesis hhnv.1 U=+norm
Assertion hhip ih=𝑖OLDU

Proof

Step Hyp Ref Expression
1 hhnv.1 U=+norm
2 polid xyxihy=normx+y2-normx-y2+inormx+iy2normx-iy24
3 1 hhnv UNrmCVec
4 1 hhba =BaseSetU
5 1 hhva +=+vU
6 1 hhsm =𝑠OLDU
7 1 hhnm norm=normCVU
8 eqid 𝑖OLDU=𝑖OLDU
9 1 hhvs -=-vU
10 4 5 6 7 8 9 ipval3 UNrmCVecxyx𝑖OLDUy=normx+y2-normx-y2+inormx+iy2normx-iy24
11 3 10 mp3an1 xyx𝑖OLDUy=normx+y2-normx-y2+inormx+iy2normx-iy24
12 2 11 eqtr4d xyxihy=x𝑖OLDUy
13 12 rgen2 xyxihy=x𝑖OLDUy
14 ax-hfi ih:×
15 4 8 ipf UNrmCVec𝑖OLDU:×
16 3 15 ax-mp 𝑖OLDU:×
17 ffn ih:×ihFn×
18 ffn 𝑖OLDU:×𝑖OLDUFn×
19 eqfnov2 ihFn×𝑖OLDUFn×ih=𝑖OLDUxyxihy=x𝑖OLDUy
20 17 18 19 syl2an ih:×𝑖OLDU:×ih=𝑖OLDUxyxihy=x𝑖OLDUy
21 14 16 20 mp2an ih=𝑖OLDUxyxihy=x𝑖OLDUy
22 13 21 mpbir ih=𝑖OLDU