Description: 3imp with innermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bi33imp12.1 | |- ( ph -> ( ps -> ( ch <-> th ) ) ) |
|
Assertion | bi33imp12 | |- ( ( ph /\ ps /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi33imp12.1 | |- ( ph -> ( ps -> ( ch <-> th ) ) ) |
|
2 | biimp | |- ( ( ch <-> th ) -> ( ch -> th ) ) |
|
3 | 1 2 | syl6 | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
4 | 3 | 3imp | |- ( ( ph /\ ps /\ ch ) -> th ) |