Description: 3imp with innermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bi33imp12.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ↔ 𝜃 ) ) ) | |
Assertion | bi33imp12 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi33imp12.1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 ↔ 𝜃 ) ) ) | |
2 | biimp | ⊢ ( ( 𝜒 ↔ 𝜃 ) → ( 𝜒 → 𝜃 ) ) | |
3 | 1 2 | syl6 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) |
4 | 3 | 3imp | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) |