Metamath Proof Explorer


Theorem bj-2exim

Description: Closed form of 2eximi . (Contributed by BJ, 6-May-2019)

Ref Expression
Assertion bj-2exim
|- ( A. x A. y ( ph -> ps ) -> ( E. x E. y ph -> E. x E. y ps ) )

Proof

Step Hyp Ref Expression
1 exim
 |-  ( A. y ( ph -> ps ) -> ( E. y ph -> E. y ps ) )
2 1 aleximi
 |-  ( A. x A. y ( ph -> ps ) -> ( E. x E. y ph -> E. x E. y ps ) )