Description: Closed form of alanimi . (Contributed by BJ, 6-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-alanim | |- ( A. x ( ( ph /\ ps ) -> ch ) -> ( ( A. x ph /\ A. x ps ) -> A. x ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 | |- ( ( ( ph /\ ps ) -> ch ) -> ( ph -> ( ps -> ch ) ) ) |
|
2 | 1 | alimi | |- ( A. x ( ( ph /\ ps ) -> ch ) -> A. x ( ph -> ( ps -> ch ) ) ) |
3 | al2im | |- ( A. x ( ph -> ( ps -> ch ) ) -> ( A. x ph -> ( A. x ps -> A. x ch ) ) ) |
|
4 | 2 3 | syl | |- ( A. x ( ( ph /\ ps ) -> ch ) -> ( A. x ph -> ( A. x ps -> A. x ch ) ) ) |
5 | 4 | impd | |- ( A. x ( ( ph /\ ps ) -> ch ) -> ( ( A. x ph /\ A. x ps ) -> A. x ch ) ) |