Metamath Proof Explorer


Theorem bj-alanim

Description: Closed form of alanimi . (Contributed by BJ, 6-May-2019)

Ref Expression
Assertion bj-alanim
|- ( A. x ( ( ph /\ ps ) -> ch ) -> ( ( A. x ph /\ A. x ps ) -> A. x ch ) )

Proof

Step Hyp Ref Expression
1 pm3.3
 |-  ( ( ( ph /\ ps ) -> ch ) -> ( ph -> ( ps -> ch ) ) )
2 1 alimi
 |-  ( A. x ( ( ph /\ ps ) -> ch ) -> A. x ( ph -> ( ps -> ch ) ) )
3 al2im
 |-  ( A. x ( ph -> ( ps -> ch ) ) -> ( A. x ph -> ( A. x ps -> A. x ch ) ) )
4 2 3 syl
 |-  ( A. x ( ( ph /\ ps ) -> ch ) -> ( A. x ph -> ( A. x ps -> A. x ch ) ) )
5 4 impd
 |-  ( A. x ( ( ph /\ ps ) -> ch ) -> ( ( A. x ph /\ A. x ps ) -> A. x ch ) )