Description: Closed form of alanimi . (Contributed by BJ, 6-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-alanim | ⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∀ 𝑥 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) | |
2 | 1 | alimi | ⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) ) |
3 | al2im | ⊢ ( ∀ 𝑥 ( 𝜑 → ( 𝜓 → 𝜒 ) ) → ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑥 𝜒 ) ) ) | |
4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 𝜓 → ∀ 𝑥 𝜒 ) ) ) |
5 | 4 | impd | ⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ 𝜓 ) → 𝜒 ) → ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∀ 𝑥 𝜒 ) ) |