Description: Closed form of 2eximi . (Contributed by BJ, 6-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-2exim | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim | ⊢ ( ∀ 𝑦 ( 𝜑 → 𝜓 ) → ( ∃ 𝑦 𝜑 → ∃ 𝑦 𝜓 ) ) | |
| 2 | 1 | aleximi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑥 ∃ 𝑦 𝜓 ) ) |