Metamath Proof Explorer


Theorem bj-aleximiALT

Description: Alternate proof of aleximi from exim , which is sometimes used as an axiom in instuitionistic modal logic. (Contributed by BJ, 9-Dec-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis bj-aleximiALT.1
|- ( ph -> ( ps -> ch ) )
Assertion bj-aleximiALT
|- ( A. x ph -> ( E. x ps -> E. x ch ) )

Proof

Step Hyp Ref Expression
1 bj-aleximiALT.1
 |-  ( ph -> ( ps -> ch ) )
2 1 alimi
 |-  ( A. x ph -> A. x ( ps -> ch ) )
3 bj-eximALT
 |-  ( A. x ( ps -> ch ) -> ( E. x ps -> E. x ch ) )
4 2 3 syl
 |-  ( A. x ph -> ( E. x ps -> E. x ch ) )