Metamath Proof Explorer


Theorem bj-alrimd

Description: A slightly more general alrimd . A common usage will have ph substituted for ps and ch substituted for th , giving a form closer to alrimd . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-alrimd.ph
|- ( ph -> A. x ps )
bj-alrimd.th
|- ( ph -> ( ch -> A. x th ) )
bj-alrimd.maj
|- ( ps -> ( th -> ta ) )
Assertion bj-alrimd
|- ( ph -> ( ch -> A. x ta ) )

Proof

Step Hyp Ref Expression
1 bj-alrimd.ph
 |-  ( ph -> A. x ps )
2 bj-alrimd.th
 |-  ( ph -> ( ch -> A. x th ) )
3 bj-alrimd.maj
 |-  ( ps -> ( th -> ta ) )
4 1 3 sylg
 |-  ( ph -> A. x ( th -> ta ) )
5 bj-alrimg
 |-  ( ( ch -> A. x th ) -> ( A. x ( th -> ta ) -> ( ch -> A. x ta ) ) )
6 2 4 5 sylc
 |-  ( ph -> ( ch -> A. x ta ) )