Metamath Proof Explorer


Theorem bj-alrimd

Description: A slightly more general alrimd . A common usage will have ph substituted for ps and ch substituted for th , giving a form closer to alrimd . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-alrimd.ph ( 𝜑 → ∀ 𝑥 𝜓 )
bj-alrimd.th ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜃 ) )
bj-alrimd.maj ( 𝜓 → ( 𝜃𝜏 ) )
Assertion bj-alrimd ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜏 ) )

Proof

Step Hyp Ref Expression
1 bj-alrimd.ph ( 𝜑 → ∀ 𝑥 𝜓 )
2 bj-alrimd.th ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜃 ) )
3 bj-alrimd.maj ( 𝜓 → ( 𝜃𝜏 ) )
4 1 3 sylg ( 𝜑 → ∀ 𝑥 ( 𝜃𝜏 ) )
5 bj-alrimg ( ( 𝜒 → ∀ 𝑥 𝜃 ) → ( ∀ 𝑥 ( 𝜃𝜏 ) → ( 𝜒 → ∀ 𝑥 𝜏 ) ) )
6 2 4 5 sylc ( 𝜑 → ( 𝜒 → ∀ 𝑥 𝜏 ) )