| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-ax12 |
|- A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) |
| 2 |
|
sb6 |
|- ( [ t / x ] ph <-> A. x ( x = t -> ph ) ) |
| 3 |
2
|
imbi2i |
|- ( ( ph -> [ t / x ] ph ) <-> ( ph -> A. x ( x = t -> ph ) ) ) |
| 4 |
3
|
imbi2i |
|- ( ( x = t -> ( ph -> [ t / x ] ph ) ) <-> ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) |
| 5 |
4
|
albii |
|- ( A. x ( x = t -> ( ph -> [ t / x ] ph ) ) <-> A. x ( x = t -> ( ph -> A. x ( x = t -> ph ) ) ) ) |
| 6 |
1 5
|
mpbir |
|- A. x ( x = t -> ( ph -> [ t / x ] ph ) ) |
| 7 |
|
sb6 |
|- ( [ t / x ] ( ph -> [ t / x ] ph ) <-> A. x ( x = t -> ( ph -> [ t / x ] ph ) ) ) |
| 8 |
6 7
|
mpbir |
|- [ t / x ] ( ph -> [ t / x ] ph ) |