| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-ax12 |
⊢ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) |
| 2 |
|
sb6 |
⊢ ( [ 𝑡 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) |
| 3 |
2
|
imbi2i |
⊢ ( ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) |
| 4 |
3
|
imbi2i |
⊢ ( ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) ↔ ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) ) |
| 5 |
4
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜑 ) ) ) ) |
| 6 |
1 5
|
mpbir |
⊢ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) |
| 7 |
|
sb6 |
⊢ ( [ 𝑡 / 𝑥 ] ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑡 → ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) ) ) |
| 8 |
6 7
|
mpbir |
⊢ [ 𝑡 / 𝑥 ] ( 𝜑 → [ 𝑡 / 𝑥 ] 𝜑 ) |