Metamath Proof Explorer


Theorem bj-df-ifc

Description: Candidate definition for the conditional operator for classes. This is in line with the definition of a class as the extension of a predicate in df-clab . We reprove the current df-if from it in bj-dfif . (Contributed by BJ, 20-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-df-ifc
|- if ( ph , A , B ) = { x | if- ( ph , x e. A , x e. B ) }

Proof

Step Hyp Ref Expression
1 df-if
 |-  if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) }
2 ancom
 |-  ( ( x e. A /\ ph ) <-> ( ph /\ x e. A ) )
3 ancom
 |-  ( ( x e. B /\ -. ph ) <-> ( -. ph /\ x e. B ) )
4 2 3 orbi12i
 |-  ( ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) <-> ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) )
5 df-ifp
 |-  ( if- ( ph , x e. A , x e. B ) <-> ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) )
6 4 5 bitr4i
 |-  ( ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) <-> if- ( ph , x e. A , x e. B ) )
7 6 abbii
 |-  { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } = { x | if- ( ph , x e. A , x e. B ) }
8 1 7 eqtri
 |-  if ( ph , A , B ) = { x | if- ( ph , x e. A , x e. B ) }