Step |
Hyp |
Ref |
Expression |
1 |
|
df-if |
|- if ( ph , A , B ) = { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } |
2 |
|
ancom |
|- ( ( x e. A /\ ph ) <-> ( ph /\ x e. A ) ) |
3 |
|
ancom |
|- ( ( x e. B /\ -. ph ) <-> ( -. ph /\ x e. B ) ) |
4 |
2 3
|
orbi12i |
|- ( ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) <-> ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) ) |
5 |
|
df-ifp |
|- ( if- ( ph , x e. A , x e. B ) <-> ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) ) |
6 |
4 5
|
bitr4i |
|- ( ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) <-> if- ( ph , x e. A , x e. B ) ) |
7 |
6
|
abbii |
|- { x | ( ( x e. A /\ ph ) \/ ( x e. B /\ -. ph ) ) } = { x | if- ( ph , x e. A , x e. B ) } |
8 |
1 7
|
eqtri |
|- if ( ph , A , B ) = { x | if- ( ph , x e. A , x e. B ) } |