Metamath Proof Explorer


Theorem bj-df-ifc

Description: Candidate definition for the conditional operator for classes. This is in line with the definition of a class as the extension of a predicate in df-clab . We reprove the current df-if from it in bj-dfif . (Contributed by BJ, 20-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-df-ifc if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) }

Proof

Step Hyp Ref Expression
1 df-if if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ ( ( 𝑥𝐴𝜑 ) ∨ ( 𝑥𝐵 ∧ ¬ 𝜑 ) ) }
2 ancom ( ( 𝑥𝐴𝜑 ) ↔ ( 𝜑𝑥𝐴 ) )
3 ancom ( ( 𝑥𝐵 ∧ ¬ 𝜑 ) ↔ ( ¬ 𝜑𝑥𝐵 ) )
4 2 3 orbi12i ( ( ( 𝑥𝐴𝜑 ) ∨ ( 𝑥𝐵 ∧ ¬ 𝜑 ) ) ↔ ( ( 𝜑𝑥𝐴 ) ∨ ( ¬ 𝜑𝑥𝐵 ) ) )
5 df-ifp ( if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) ↔ ( ( 𝜑𝑥𝐴 ) ∨ ( ¬ 𝜑𝑥𝐵 ) ) )
6 4 5 bitr4i ( ( ( 𝑥𝐴𝜑 ) ∨ ( 𝑥𝐵 ∧ ¬ 𝜑 ) ) ↔ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) )
7 6 abbii { 𝑥 ∣ ( ( 𝑥𝐴𝜑 ) ∨ ( 𝑥𝐵 ∧ ¬ 𝜑 ) ) } = { 𝑥 ∣ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) }
8 1 7 eqtri if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) }