Metamath Proof Explorer


Theorem bj-dfif

Description: Alternate definition of the conditional operator for classes, which used to be the main definition. (Contributed by BJ, 26-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-dfif if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ ( ( 𝜑𝑥𝐴 ) ∨ ( ¬ 𝜑𝑥𝐵 ) ) }

Proof

Step Hyp Ref Expression
1 bj-df-ifc if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) }
2 df-ifp ( if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) ↔ ( ( 𝜑𝑥𝐴 ) ∨ ( ¬ 𝜑𝑥𝐵 ) ) )
3 2 abbii { 𝑥 ∣ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) } = { 𝑥 ∣ ( ( 𝜑𝑥𝐴 ) ∨ ( ¬ 𝜑𝑥𝐵 ) ) }
4 1 3 eqtri if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ ( ( 𝜑𝑥𝐴 ) ∨ ( ¬ 𝜑𝑥𝐵 ) ) }