Description: Alternate definition of the conditional operator for classes, which used to be the main definition. (Contributed by BJ, 26-Dec-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfif | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-df-ifc | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ if- ( 𝜑 , 𝑥 ∈ 𝐴 , 𝑥 ∈ 𝐵 ) } | |
2 | df-ifp | ⊢ ( if- ( 𝜑 , 𝑥 ∈ 𝐴 , 𝑥 ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) ) | |
3 | 2 | abbii | ⊢ { 𝑥 ∣ if- ( 𝜑 , 𝑥 ∈ 𝐴 , 𝑥 ∈ 𝐵 ) } = { 𝑥 ∣ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) } |
4 | 1 3 | eqtri | ⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑥 ∈ 𝐵 ) ) } |