Description: Alternate definition of the conditional operator for classes, which used to be the main definition. (Contributed by BJ, 26-Dec-2023) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfif | |- if ( ph , A , B ) = { x | ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-df-ifc | |- if ( ph , A , B ) = { x | if- ( ph , x e. A , x e. B ) } |
|
2 | df-ifp | |- ( if- ( ph , x e. A , x e. B ) <-> ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) ) |
|
3 | 2 | abbii | |- { x | if- ( ph , x e. A , x e. B ) } = { x | ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) } |
4 | 1 3 | eqtri | |- if ( ph , A , B ) = { x | ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) } |