Metamath Proof Explorer


Theorem bj-dfif

Description: Alternate definition of the conditional operator for classes, which used to be the main definition. (Contributed by BJ, 26-Dec-2023) (Proof modification is discouraged.)

Ref Expression
Assertion bj-dfif
|- if ( ph , A , B ) = { x | ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) }

Proof

Step Hyp Ref Expression
1 bj-df-ifc
 |-  if ( ph , A , B ) = { x | if- ( ph , x e. A , x e. B ) }
2 df-ifp
 |-  ( if- ( ph , x e. A , x e. B ) <-> ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) )
3 2 abbii
 |-  { x | if- ( ph , x e. A , x e. B ) } = { x | ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) }
4 1 3 eqtri
 |-  if ( ph , A , B ) = { x | ( ( ph /\ x e. A ) \/ ( -. ph /\ x e. B ) ) }