Metamath Proof Explorer


Theorem bj-ififc

Description: A biconditional connecting the conditional operator for propositions and the conditional operator for classes. Note that there is no sethood hypothesis on X : it is implied by either side. (Contributed by BJ, 24-Sep-2019) Generalize statement from setvar x to class X . (Revised by BJ, 26-Dec-2023)

Ref Expression
Assertion bj-ififc
|- ( X e. if ( ph , A , B ) <-> if- ( ph , X e. A , X e. B ) )

Proof

Step Hyp Ref Expression
1 bj-df-ifc
 |-  if ( ph , A , B ) = { x | if- ( ph , x e. A , x e. B ) }
2 1 eleq2i
 |-  ( X e. if ( ph , A , B ) <-> X e. { x | if- ( ph , x e. A , x e. B ) } )
3 df-ifp
 |-  ( if- ( ph , X e. A , X e. B ) <-> ( ( ph /\ X e. A ) \/ ( -. ph /\ X e. B ) ) )
4 elex
 |-  ( X e. A -> X e. _V )
5 4 adantl
 |-  ( ( ph /\ X e. A ) -> X e. _V )
6 elex
 |-  ( X e. B -> X e. _V )
7 6 adantl
 |-  ( ( -. ph /\ X e. B ) -> X e. _V )
8 5 7 jaoi
 |-  ( ( ( ph /\ X e. A ) \/ ( -. ph /\ X e. B ) ) -> X e. _V )
9 3 8 sylbi
 |-  ( if- ( ph , X e. A , X e. B ) -> X e. _V )
10 eleq1
 |-  ( x = X -> ( x e. A <-> X e. A ) )
11 eleq1
 |-  ( x = X -> ( x e. B <-> X e. B ) )
12 10 11 ifpbi23d
 |-  ( x = X -> ( if- ( ph , x e. A , x e. B ) <-> if- ( ph , X e. A , X e. B ) ) )
13 9 12 elab3
 |-  ( X e. { x | if- ( ph , x e. A , x e. B ) } <-> if- ( ph , X e. A , X e. B ) )
14 2 13 bitri
 |-  ( X e. if ( ph , A , B ) <-> if- ( ph , X e. A , X e. B ) )