Step |
Hyp |
Ref |
Expression |
1 |
|
bj-df-ifc |
⊢ if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ if- ( 𝜑 , 𝑥 ∈ 𝐴 , 𝑥 ∈ 𝐵 ) } |
2 |
1
|
eleq2i |
⊢ ( 𝑋 ∈ if ( 𝜑 , 𝐴 , 𝐵 ) ↔ 𝑋 ∈ { 𝑥 ∣ if- ( 𝜑 , 𝑥 ∈ 𝐴 , 𝑥 ∈ 𝐵 ) } ) |
3 |
|
df-ifp |
⊢ ( if- ( 𝜑 , 𝑋 ∈ 𝐴 , 𝑋 ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑋 ∈ 𝐵 ) ) ) |
4 |
|
elex |
⊢ ( 𝑋 ∈ 𝐴 → 𝑋 ∈ V ) |
5 |
4
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ V ) |
6 |
|
elex |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ V ) |
7 |
6
|
adantl |
⊢ ( ( ¬ 𝜑 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ V ) |
8 |
5 7
|
jaoi |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ 𝐴 ) ∨ ( ¬ 𝜑 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ V ) |
9 |
3 8
|
sylbi |
⊢ ( if- ( 𝜑 , 𝑋 ∈ 𝐴 , 𝑋 ∈ 𝐵 ) → 𝑋 ∈ V ) |
10 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴 ) ) |
11 |
|
eleq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
12 |
10 11
|
ifpbi23d |
⊢ ( 𝑥 = 𝑋 → ( if- ( 𝜑 , 𝑥 ∈ 𝐴 , 𝑥 ∈ 𝐵 ) ↔ if- ( 𝜑 , 𝑋 ∈ 𝐴 , 𝑋 ∈ 𝐵 ) ) ) |
13 |
9 12
|
elab3 |
⊢ ( 𝑋 ∈ { 𝑥 ∣ if- ( 𝜑 , 𝑥 ∈ 𝐴 , 𝑥 ∈ 𝐵 ) } ↔ if- ( 𝜑 , 𝑋 ∈ 𝐴 , 𝑋 ∈ 𝐵 ) ) |
14 |
2 13
|
bitri |
⊢ ( 𝑋 ∈ if ( 𝜑 , 𝐴 , 𝐵 ) ↔ if- ( 𝜑 , 𝑋 ∈ 𝐴 , 𝑋 ∈ 𝐵 ) ) |