Metamath Proof Explorer


Theorem bj-ififc

Description: A biconditional connecting the conditional operator for propositions and the conditional operator for classes. Note that there is no sethood hypothesis on X : it is implied by either side. (Contributed by BJ, 24-Sep-2019) Generalize statement from setvar x to class X . (Revised by BJ, 26-Dec-2023)

Ref Expression
Assertion bj-ififc ( 𝑋 ∈ if ( 𝜑 , 𝐴 , 𝐵 ) ↔ if- ( 𝜑 , 𝑋𝐴 , 𝑋𝐵 ) )

Proof

Step Hyp Ref Expression
1 bj-df-ifc if ( 𝜑 , 𝐴 , 𝐵 ) = { 𝑥 ∣ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) }
2 1 eleq2i ( 𝑋 ∈ if ( 𝜑 , 𝐴 , 𝐵 ) ↔ 𝑋 ∈ { 𝑥 ∣ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) } )
3 df-ifp ( if- ( 𝜑 , 𝑋𝐴 , 𝑋𝐵 ) ↔ ( ( 𝜑𝑋𝐴 ) ∨ ( ¬ 𝜑𝑋𝐵 ) ) )
4 elex ( 𝑋𝐴𝑋 ∈ V )
5 4 adantl ( ( 𝜑𝑋𝐴 ) → 𝑋 ∈ V )
6 elex ( 𝑋𝐵𝑋 ∈ V )
7 6 adantl ( ( ¬ 𝜑𝑋𝐵 ) → 𝑋 ∈ V )
8 5 7 jaoi ( ( ( 𝜑𝑋𝐴 ) ∨ ( ¬ 𝜑𝑋𝐵 ) ) → 𝑋 ∈ V )
9 3 8 sylbi ( if- ( 𝜑 , 𝑋𝐴 , 𝑋𝐵 ) → 𝑋 ∈ V )
10 eleq1 ( 𝑥 = 𝑋 → ( 𝑥𝐴𝑋𝐴 ) )
11 eleq1 ( 𝑥 = 𝑋 → ( 𝑥𝐵𝑋𝐵 ) )
12 10 11 ifpbi23d ( 𝑥 = 𝑋 → ( if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) ↔ if- ( 𝜑 , 𝑋𝐴 , 𝑋𝐵 ) ) )
13 9 12 elab3 ( 𝑋 ∈ { 𝑥 ∣ if- ( 𝜑 , 𝑥𝐴 , 𝑥𝐵 ) } ↔ if- ( 𝜑 , 𝑋𝐴 , 𝑋𝐵 ) )
14 2 13 bitri ( 𝑋 ∈ if ( 𝜑 , 𝐴 , 𝐵 ) ↔ if- ( 𝜑 , 𝑋𝐴 , 𝑋𝐵 ) )