Description: Alternate definition of nonfreeness when sp is available. (Contributed by BJ, 28-Jul-2023) The proof should not rely on df-nf . (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-dfnnf3 | |- ( F// x ph <-> ( E. x ph -> A. x ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnfea | |- ( F// x ph -> ( E. x ph -> A. x ph ) ) |
|
| 2 | bj-19.21bit | |- ( ( E. x ph -> A. x ph ) -> ( E. x ph -> ph ) ) |
|
| 3 | bj-19.23bit | |- ( ( E. x ph -> A. x ph ) -> ( ph -> A. x ph ) ) |
|
| 4 | df-bj-nnf | |- ( F// x ph <-> ( ( E. x ph -> ph ) /\ ( ph -> A. x ph ) ) ) |
|
| 5 | 2 3 4 | sylanbrc | |- ( ( E. x ph -> A. x ph ) -> F// x ph ) |
| 6 | 1 5 | impbii | |- ( F// x ph <-> ( E. x ph -> A. x ph ) ) |