Metamath Proof Explorer


Theorem bj-dfnnf3

Description: Alternate definition of nonfreeness when sp is available. (Contributed by BJ, 28-Jul-2023) The proof should not rely on df-nf . (Proof modification is discouraged.)

Ref Expression
Assertion bj-dfnnf3
|- ( F// x ph <-> ( E. x ph -> A. x ph ) )

Proof

Step Hyp Ref Expression
1 bj-nnfea
 |-  ( F// x ph -> ( E. x ph -> A. x ph ) )
2 bj-19.21bit
 |-  ( ( E. x ph -> A. x ph ) -> ( E. x ph -> ph ) )
3 bj-19.23bit
 |-  ( ( E. x ph -> A. x ph ) -> ( ph -> A. x ph ) )
4 df-bj-nnf
 |-  ( F// x ph <-> ( ( E. x ph -> ph ) /\ ( ph -> A. x ph ) ) )
5 2 3 4 sylanbrc
 |-  ( ( E. x ph -> A. x ph ) -> F// x ph )
6 1 5 impbii
 |-  ( F// x ph <-> ( E. x ph -> A. x ph ) )