Metamath Proof Explorer


Theorem bj-nfnnfTEMP

Description: New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp . (Contributed by BJ, 28-Jul-2023) The proof should not rely on df-nf except via df-nf directly. (Proof modification is discouraged.)

Ref Expression
Assertion bj-nfnnfTEMP
|- ( F// x ph <-> F/ x ph )

Proof

Step Hyp Ref Expression
1 bj-dfnnf3
 |-  ( F// x ph <-> ( E. x ph -> A. x ph ) )
2 df-nf
 |-  ( F/ x ph <-> ( E. x ph -> A. x ph ) )
3 1 2 bitr4i
 |-  ( F// x ph <-> F/ x ph )