Metamath Proof Explorer


Theorem bj-discrmoore

Description: The powerclass ~P A is a Moore collection if and only if A is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Assertion bj-discrmoore
|- ( A e. _V <-> ~P A e. Moore_ )

Proof

Step Hyp Ref Expression
1 unipw
 |-  U. ~P A = A
2 1 ineq1i
 |-  ( U. ~P A i^i |^| x ) = ( A i^i |^| x )
3 inex1g
 |-  ( A e. _V -> ( A i^i |^| x ) e. _V )
4 inss1
 |-  ( A i^i |^| x ) C_ A
5 4 a1i
 |-  ( A e. _V -> ( A i^i |^| x ) C_ A )
6 3 5 elpwd
 |-  ( A e. _V -> ( A i^i |^| x ) e. ~P A )
7 2 6 eqeltrid
 |-  ( A e. _V -> ( U. ~P A i^i |^| x ) e. ~P A )
8 7 adantr
 |-  ( ( A e. _V /\ x C_ ~P A ) -> ( U. ~P A i^i |^| x ) e. ~P A )
9 8 bj-ismooredr
 |-  ( A e. _V -> ~P A e. Moore_ )
10 pwexr
 |-  ( ~P A e. Moore_ -> A e. _V )
11 9 10 impbii
 |-  ( A e. _V <-> ~P A e. Moore_ )