| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unipw |
|- U. ~P A = A |
| 2 |
1
|
ineq1i |
|- ( U. ~P A i^i |^| x ) = ( A i^i |^| x ) |
| 3 |
|
inex1g |
|- ( A e. _V -> ( A i^i |^| x ) e. _V ) |
| 4 |
|
inss1 |
|- ( A i^i |^| x ) C_ A |
| 5 |
4
|
a1i |
|- ( A e. _V -> ( A i^i |^| x ) C_ A ) |
| 6 |
3 5
|
elpwd |
|- ( A e. _V -> ( A i^i |^| x ) e. ~P A ) |
| 7 |
2 6
|
eqeltrid |
|- ( A e. _V -> ( U. ~P A i^i |^| x ) e. ~P A ) |
| 8 |
7
|
adantr |
|- ( ( A e. _V /\ x C_ ~P A ) -> ( U. ~P A i^i |^| x ) e. ~P A ) |
| 9 |
8
|
bj-ismooredr |
|- ( A e. _V -> ~P A e. Moore_ ) |
| 10 |
|
pwexr |
|- ( ~P A e. Moore_ -> A e. _V ) |
| 11 |
9 10
|
impbii |
|- ( A e. _V <-> ~P A e. Moore_ ) |