Metamath Proof Explorer


Theorem bj-ismooredr

Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on A : it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypothesis bj-ismooredr.1
|- ( ( ph /\ x C_ A ) -> ( U. A i^i |^| x ) e. A )
Assertion bj-ismooredr
|- ( ph -> A e. Moore_ )

Proof

Step Hyp Ref Expression
1 bj-ismooredr.1
 |-  ( ( ph /\ x C_ A ) -> ( U. A i^i |^| x ) e. A )
2 elpwi
 |-  ( x e. ~P A -> x C_ A )
3 1 ex
 |-  ( ph -> ( x C_ A -> ( U. A i^i |^| x ) e. A ) )
4 2 3 syl5
 |-  ( ph -> ( x e. ~P A -> ( U. A i^i |^| x ) e. A ) )
5 4 ralrimiv
 |-  ( ph -> A. x e. ~P A ( U. A i^i |^| x ) e. A )
6 bj-ismoore
 |-  ( A e. Moore_ <-> A. x e. ~P A ( U. A i^i |^| x ) e. A )
7 5 6 sylibr
 |-  ( ph -> A e. Moore_ )