Metamath Proof Explorer


Theorem bj-ismoore

Description: Characterization of Moore collections. Note that there is no sethood hypothesis on A : it is implied by either side (this is obvious for the LHS, and is the content of bj-mooreset for the RHS). (Contributed by BJ, 9-Dec-2021)

Ref Expression
Assertion bj-ismoore
|- ( A e. Moore_ <-> A. x e. ~P A ( U. A i^i |^| x ) e. A )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. Moore_ -> A e. _V )
2 bj-mooreset
 |-  ( A. x e. ~P A ( U. A i^i |^| x ) e. A -> A e. _V )
3 pweq
 |-  ( y = A -> ~P y = ~P A )
4 unieq
 |-  ( y = A -> U. y = U. A )
5 4 ineq1d
 |-  ( y = A -> ( U. y i^i |^| x ) = ( U. A i^i |^| x ) )
6 id
 |-  ( y = A -> y = A )
7 5 6 eleq12d
 |-  ( y = A -> ( ( U. y i^i |^| x ) e. y <-> ( U. A i^i |^| x ) e. A ) )
8 3 7 raleqbidv
 |-  ( y = A -> ( A. x e. ~P y ( U. y i^i |^| x ) e. y <-> A. x e. ~P A ( U. A i^i |^| x ) e. A ) )
9 df-bj-moore
 |-  Moore_ = { y | A. x e. ~P y ( U. y i^i |^| x ) e. y }
10 8 9 elab2g
 |-  ( A e. _V -> ( A e. Moore_ <-> A. x e. ~P A ( U. A i^i |^| x ) e. A ) )
11 1 2 10 pm5.21nii
 |-  ( A e. Moore_ <-> A. x e. ~P A ( U. A i^i |^| x ) e. A )