| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐴  ∈  Moore  →  𝐴  ∈  V ) | 
						
							| 2 |  | bj-mooreset | ⊢ ( ∀ 𝑥  ∈  𝒫  𝐴 ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴  →  𝐴  ∈  V ) | 
						
							| 3 |  | pweq | ⊢ ( 𝑦  =  𝐴  →  𝒫  𝑦  =  𝒫  𝐴 ) | 
						
							| 4 |  | unieq | ⊢ ( 𝑦  =  𝐴  →  ∪  𝑦  =  ∪  𝐴 ) | 
						
							| 5 | 4 | ineq1d | ⊢ ( 𝑦  =  𝐴  →  ( ∪  𝑦  ∩  ∩  𝑥 )  =  ( ∪  𝐴  ∩  ∩  𝑥 ) ) | 
						
							| 6 |  | id | ⊢ ( 𝑦  =  𝐴  →  𝑦  =  𝐴 ) | 
						
							| 7 | 5 6 | eleq12d | ⊢ ( 𝑦  =  𝐴  →  ( ( ∪  𝑦  ∩  ∩  𝑥 )  ∈  𝑦  ↔  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 8 | 3 7 | raleqbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥  ∈  𝒫  𝑦 ( ∪  𝑦  ∩  ∩  𝑥 )  ∈  𝑦  ↔  ∀ 𝑥  ∈  𝒫  𝐴 ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 9 |  | df-bj-moore | ⊢ Moore  =  { 𝑦  ∣  ∀ 𝑥  ∈  𝒫  𝑦 ( ∪  𝑦  ∩  ∩  𝑥 )  ∈  𝑦 } | 
						
							| 10 | 8 9 | elab2g | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ∈  Moore  ↔  ∀ 𝑥  ∈  𝒫  𝐴 ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 11 | 1 2 10 | pm5.21nii | ⊢ ( 𝐴  ∈  Moore  ↔  ∀ 𝑥  ∈  𝒫  𝐴 ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) |