Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ Moore → 𝐴 ∈ V ) |
2 |
|
bj-mooreset |
⊢ ( ∀ 𝑥 ∈ 𝒫 𝐴 ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 → 𝐴 ∈ V ) |
3 |
|
pweq |
⊢ ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 ) |
4 |
|
unieq |
⊢ ( 𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴 ) |
5 |
4
|
ineq1d |
⊢ ( 𝑦 = 𝐴 → ( ∪ 𝑦 ∩ ∩ 𝑥 ) = ( ∪ 𝐴 ∩ ∩ 𝑥 ) ) |
6 |
|
id |
⊢ ( 𝑦 = 𝐴 → 𝑦 = 𝐴 ) |
7 |
5 6
|
eleq12d |
⊢ ( 𝑦 = 𝐴 → ( ( ∪ 𝑦 ∩ ∩ 𝑥 ) ∈ 𝑦 ↔ ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
8 |
3 7
|
raleqbidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ∈ 𝒫 𝑦 ( ∪ 𝑦 ∩ ∩ 𝑥 ) ∈ 𝑦 ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
9 |
|
df-bj-moore |
⊢ Moore = { 𝑦 ∣ ∀ 𝑥 ∈ 𝒫 𝑦 ( ∪ 𝑦 ∩ ∩ 𝑥 ) ∈ 𝑦 } |
10 |
8 9
|
elab2g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ Moore ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
11 |
1 2 10
|
pm5.21nii |
⊢ ( 𝐴 ∈ Moore ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) |