Metamath Proof Explorer


Theorem bj-ismoored0

Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Assertion bj-ismoored0 ( 𝐴Moore 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 bj-ismoore ( 𝐴Moore ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 𝑥 ) ∈ 𝐴 )
2 0elpw ∅ ∈ 𝒫 𝐴
3 rint0 ( 𝑥 = ∅ → ( 𝐴 𝑥 ) = 𝐴 )
4 3 eleq1d ( 𝑥 = ∅ → ( ( 𝐴 𝑥 ) ∈ 𝐴 𝐴𝐴 ) )
5 4 rspcv ( ∅ ∈ 𝒫 𝐴 → ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 𝑥 ) ∈ 𝐴 𝐴𝐴 ) )
6 2 5 ax-mp ( ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 𝑥 ) ∈ 𝐴 𝐴𝐴 )
7 1 6 sylbi ( 𝐴Moore 𝐴𝐴 )