Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-ismoored.1 | ⊢ ( 𝜑 → 𝐴 ∈ Moore ) | |
| bj-ismoored.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
| Assertion | bj-ismoored | ⊢ ( 𝜑 → ( ∪ 𝐴 ∩ ∩ 𝐵 ) ∈ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-ismoored.1 | ⊢ ( 𝜑 → 𝐴 ∈ Moore ) | |
| 2 | bj-ismoored.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 3 | inteq | ⊢ ( 𝑥 = 𝐵 → ∩ 𝑥 = ∩ 𝐵 ) | |
| 4 | 3 | ineq2d | ⊢ ( 𝑥 = 𝐵 → ( ∪ 𝐴 ∩ ∩ 𝑥 ) = ( ∪ 𝐴 ∩ ∩ 𝐵 ) ) | 
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ↔ ( ∪ 𝐴 ∩ ∩ 𝐵 ) ∈ 𝐴 ) ) | 
| 6 | bj-ismoore | ⊢ ( 𝐴 ∈ Moore ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) | |
| 7 | 1 6 | sylib | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 𝐴 ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) | 
| 8 | 1 2 | sselpwd | ⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐴 ) | 
| 9 | 5 7 8 | rspcdva | ⊢ ( 𝜑 → ( ∪ 𝐴 ∩ ∩ 𝐵 ) ∈ 𝐴 ) |