Metamath Proof Explorer


Theorem bj-ismoored

Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismoored.1 ( 𝜑𝐴Moore )
bj-ismoored.2 ( 𝜑𝐵𝐴 )
Assertion bj-ismoored ( 𝜑 → ( 𝐴 𝐵 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 bj-ismoored.1 ( 𝜑𝐴Moore )
2 bj-ismoored.2 ( 𝜑𝐵𝐴 )
3 inteq ( 𝑥 = 𝐵 𝑥 = 𝐵 )
4 3 ineq2d ( 𝑥 = 𝐵 → ( 𝐴 𝑥 ) = ( 𝐴 𝐵 ) )
5 4 eleq1d ( 𝑥 = 𝐵 → ( ( 𝐴 𝑥 ) ∈ 𝐴 ↔ ( 𝐴 𝐵 ) ∈ 𝐴 ) )
6 bj-ismoore ( 𝐴Moore ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 𝑥 ) ∈ 𝐴 )
7 1 6 sylib ( 𝜑 → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 𝑥 ) ∈ 𝐴 )
8 1 2 sselpwd ( 𝜑𝐵 ∈ 𝒫 𝐴 )
9 5 7 8 rspcdva ( 𝜑 → ( 𝐴 𝐵 ) ∈ 𝐴 )