Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ismoored.1 |
|- ( ph -> A e. Moore_ ) |
2 |
|
bj-ismoored.2 |
|- ( ph -> B C_ A ) |
3 |
|
inteq |
|- ( x = B -> |^| x = |^| B ) |
4 |
3
|
ineq2d |
|- ( x = B -> ( U. A i^i |^| x ) = ( U. A i^i |^| B ) ) |
5 |
4
|
eleq1d |
|- ( x = B -> ( ( U. A i^i |^| x ) e. A <-> ( U. A i^i |^| B ) e. A ) ) |
6 |
|
bj-ismoore |
|- ( A e. Moore_ <-> A. x e. ~P A ( U. A i^i |^| x ) e. A ) |
7 |
1 6
|
sylib |
|- ( ph -> A. x e. ~P A ( U. A i^i |^| x ) e. A ) |
8 |
1 2
|
sselpwd |
|- ( ph -> B e. ~P A ) |
9 |
5 7 8
|
rspcdva |
|- ( ph -> ( U. A i^i |^| B ) e. A ) |