| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-ismoored.1 |  |-  ( ph -> A e. Moore_ ) | 
						
							| 2 |  | bj-ismoored.2 |  |-  ( ph -> B C_ A ) | 
						
							| 3 |  | inteq |  |-  ( x = B -> |^| x = |^| B ) | 
						
							| 4 | 3 | ineq2d |  |-  ( x = B -> ( U. A i^i |^| x ) = ( U. A i^i |^| B ) ) | 
						
							| 5 | 4 | eleq1d |  |-  ( x = B -> ( ( U. A i^i |^| x ) e. A <-> ( U. A i^i |^| B ) e. A ) ) | 
						
							| 6 |  | bj-ismoore |  |-  ( A e. Moore_ <-> A. x e. ~P A ( U. A i^i |^| x ) e. A ) | 
						
							| 7 | 1 6 | sylib |  |-  ( ph -> A. x e. ~P A ( U. A i^i |^| x ) e. A ) | 
						
							| 8 | 1 2 | sselpwd |  |-  ( ph -> B e. ~P A ) | 
						
							| 9 | 5 7 8 | rspcdva |  |-  ( ph -> ( U. A i^i |^| B ) e. A ) |