Metamath Proof Explorer


Theorem bj-ismoored

Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismoored.1
|- ( ph -> A e. Moore_ )
bj-ismoored.2
|- ( ph -> B C_ A )
Assertion bj-ismoored
|- ( ph -> ( U. A i^i |^| B ) e. A )

Proof

Step Hyp Ref Expression
1 bj-ismoored.1
 |-  ( ph -> A e. Moore_ )
2 bj-ismoored.2
 |-  ( ph -> B C_ A )
3 inteq
 |-  ( x = B -> |^| x = |^| B )
4 3 ineq2d
 |-  ( x = B -> ( U. A i^i |^| x ) = ( U. A i^i |^| B ) )
5 4 eleq1d
 |-  ( x = B -> ( ( U. A i^i |^| x ) e. A <-> ( U. A i^i |^| B ) e. A ) )
6 bj-ismoore
 |-  ( A e. Moore_ <-> A. x e. ~P A ( U. A i^i |^| x ) e. A )
7 1 6 sylib
 |-  ( ph -> A. x e. ~P A ( U. A i^i |^| x ) e. A )
8 1 2 sselpwd
 |-  ( ph -> B e. ~P A )
9 5 7 8 rspcdva
 |-  ( ph -> ( U. A i^i |^| B ) e. A )