Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-ismoored.1 | |- ( ph -> A e. Moore_ ) |
|
bj-ismoored.2 | |- ( ph -> B C_ A ) |
||
bj-ismoored2.3 | |- ( ph -> B =/= (/) ) |
||
Assertion | bj-ismoored2 | |- ( ph -> |^| B e. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ismoored.1 | |- ( ph -> A e. Moore_ ) |
|
2 | bj-ismoored.2 | |- ( ph -> B C_ A ) |
|
3 | bj-ismoored2.3 | |- ( ph -> B =/= (/) ) |
|
4 | intssuni2 | |- ( ( B C_ A /\ B =/= (/) ) -> |^| B C_ U. A ) |
|
5 | 2 3 4 | syl2anc | |- ( ph -> |^| B C_ U. A ) |
6 | sseqin2 | |- ( |^| B C_ U. A <-> ( U. A i^i |^| B ) = |^| B ) |
|
7 | 5 6 | sylib | |- ( ph -> ( U. A i^i |^| B ) = |^| B ) |
8 | 1 2 | bj-ismoored | |- ( ph -> ( U. A i^i |^| B ) e. A ) |
9 | 7 8 | eqeltrrd | |- ( ph -> |^| B e. A ) |