Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-ismoored.1 | |- ( ph -> A e. Moore_ ) |
|
| bj-ismoored.2 | |- ( ph -> B C_ A ) |
||
| bj-ismoored2.3 | |- ( ph -> B =/= (/) ) |
||
| Assertion | bj-ismoored2 | |- ( ph -> |^| B e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-ismoored.1 | |- ( ph -> A e. Moore_ ) |
|
| 2 | bj-ismoored.2 | |- ( ph -> B C_ A ) |
|
| 3 | bj-ismoored2.3 | |- ( ph -> B =/= (/) ) |
|
| 4 | intssuni2 | |- ( ( B C_ A /\ B =/= (/) ) -> |^| B C_ U. A ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ph -> |^| B C_ U. A ) |
| 6 | sseqin2 | |- ( |^| B C_ U. A <-> ( U. A i^i |^| B ) = |^| B ) |
|
| 7 | 5 6 | sylib | |- ( ph -> ( U. A i^i |^| B ) = |^| B ) |
| 8 | 1 2 | bj-ismoored | |- ( ph -> ( U. A i^i |^| B ) e. A ) |
| 9 | 7 8 | eqeltrrd | |- ( ph -> |^| B e. A ) |