Metamath Proof Explorer


Theorem bj-ismoored2

Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismoored.1
|- ( ph -> A e. Moore_ )
bj-ismoored.2
|- ( ph -> B C_ A )
bj-ismoored2.3
|- ( ph -> B =/= (/) )
Assertion bj-ismoored2
|- ( ph -> |^| B e. A )

Proof

Step Hyp Ref Expression
1 bj-ismoored.1
 |-  ( ph -> A e. Moore_ )
2 bj-ismoored.2
 |-  ( ph -> B C_ A )
3 bj-ismoored2.3
 |-  ( ph -> B =/= (/) )
4 intssuni2
 |-  ( ( B C_ A /\ B =/= (/) ) -> |^| B C_ U. A )
5 2 3 4 syl2anc
 |-  ( ph -> |^| B C_ U. A )
6 sseqin2
 |-  ( |^| B C_ U. A <-> ( U. A i^i |^| B ) = |^| B )
7 5 6 sylib
 |-  ( ph -> ( U. A i^i |^| B ) = |^| B )
8 1 2 bj-ismoored
 |-  ( ph -> ( U. A i^i |^| B ) e. A )
9 7 8 eqeltrrd
 |-  ( ph -> |^| B e. A )