Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-ismoored.1 | ⊢ ( 𝜑 → 𝐴 ∈ Moore ) | |
bj-ismoored.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
bj-ismoored2.3 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
Assertion | bj-ismoored2 | ⊢ ( 𝜑 → ∩ 𝐵 ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ismoored.1 | ⊢ ( 𝜑 → 𝐴 ∈ Moore ) | |
2 | bj-ismoored.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
3 | bj-ismoored2.3 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
4 | intssuni2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∩ 𝐵 ⊆ ∪ 𝐴 ) | |
5 | 2 3 4 | syl2anc | ⊢ ( 𝜑 → ∩ 𝐵 ⊆ ∪ 𝐴 ) |
6 | sseqin2 | ⊢ ( ∩ 𝐵 ⊆ ∪ 𝐴 ↔ ( ∪ 𝐴 ∩ ∩ 𝐵 ) = ∩ 𝐵 ) | |
7 | 5 6 | sylib | ⊢ ( 𝜑 → ( ∪ 𝐴 ∩ ∩ 𝐵 ) = ∩ 𝐵 ) |
8 | 1 2 | bj-ismoored | ⊢ ( 𝜑 → ( ∪ 𝐴 ∩ ∩ 𝐵 ) ∈ 𝐴 ) |
9 | 7 8 | eqeltrrd | ⊢ ( 𝜑 → ∩ 𝐵 ∈ 𝐴 ) |