Metamath Proof Explorer


Theorem bj-ismoored2

Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismoored.1 ( 𝜑𝐴Moore )
bj-ismoored.2 ( 𝜑𝐵𝐴 )
bj-ismoored2.3 ( 𝜑𝐵 ≠ ∅ )
Assertion bj-ismoored2 ( 𝜑 𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 bj-ismoored.1 ( 𝜑𝐴Moore )
2 bj-ismoored.2 ( 𝜑𝐵𝐴 )
3 bj-ismoored2.3 ( 𝜑𝐵 ≠ ∅ )
4 intssuni2 ( ( 𝐵𝐴𝐵 ≠ ∅ ) → 𝐵 𝐴 )
5 2 3 4 syl2anc ( 𝜑 𝐵 𝐴 )
6 sseqin2 ( 𝐵 𝐴 ↔ ( 𝐴 𝐵 ) = 𝐵 )
7 5 6 sylib ( 𝜑 → ( 𝐴 𝐵 ) = 𝐵 )
8 1 2 bj-ismoored ( 𝜑 → ( 𝐴 𝐵 ) ∈ 𝐴 )
9 7 8 eqeltrrd ( 𝜑 𝐵𝐴 )