Description: Necessary condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-ismoored.1 | ⊢ ( 𝜑 → 𝐴 ∈ Moore ) | |
| bj-ismoored.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | ||
| bj-ismoored2.3 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | ||
| Assertion | bj-ismoored2 | ⊢ ( 𝜑 → ∩ 𝐵 ∈ 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-ismoored.1 | ⊢ ( 𝜑 → 𝐴 ∈ Moore ) | |
| 2 | bj-ismoored.2 | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) | |
| 3 | bj-ismoored2.3 | ⊢ ( 𝜑 → 𝐵 ≠ ∅ ) | |
| 4 | intssuni2 | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅ ) → ∩ 𝐵 ⊆ ∪ 𝐴 ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( 𝜑 → ∩ 𝐵 ⊆ ∪ 𝐴 ) | 
| 6 | sseqin2 | ⊢ ( ∩ 𝐵 ⊆ ∪ 𝐴 ↔ ( ∪ 𝐴 ∩ ∩ 𝐵 ) = ∩ 𝐵 ) | |
| 7 | 5 6 | sylib | ⊢ ( 𝜑 → ( ∪ 𝐴 ∩ ∩ 𝐵 ) = ∩ 𝐵 ) | 
| 8 | 1 2 | bj-ismoored | ⊢ ( 𝜑 → ( ∪ 𝐴 ∩ ∩ 𝐵 ) ∈ 𝐴 ) | 
| 9 | 7 8 | eqeltrrd | ⊢ ( 𝜑 → ∩ 𝐵 ∈ 𝐴 ) |