Metamath Proof Explorer


Theorem bj-ismooredr

Description: Sufficient condition to be a Moore collection. Note that there is no sethood hypothesis on A : it is a consequence of the only hypothesis. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypothesis bj-ismooredr.1 ( ( 𝜑𝑥𝐴 ) → ( 𝐴 𝑥 ) ∈ 𝐴 )
Assertion bj-ismooredr ( 𝜑𝐴Moore )

Proof

Step Hyp Ref Expression
1 bj-ismooredr.1 ( ( 𝜑𝑥𝐴 ) → ( 𝐴 𝑥 ) ∈ 𝐴 )
2 elpwi ( 𝑥 ∈ 𝒫 𝐴𝑥𝐴 )
3 1 ex ( 𝜑 → ( 𝑥𝐴 → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
4 2 3 syl5 ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
5 4 ralrimiv ( 𝜑 → ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 𝑥 ) ∈ 𝐴 )
6 bj-ismoore ( 𝐴Moore ↔ ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 𝑥 ) ∈ 𝐴 )
7 5 6 sylibr ( 𝜑𝐴Moore )