| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-ismooredr2.1 | ⊢ ( 𝜑  →  ∪  𝐴  ∈  𝐴 ) | 
						
							| 2 |  | bj-ismooredr2.2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ ) )  →  ∩  𝑥  ∈  𝐴 ) | 
						
							| 3 | 2 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ∩  𝑥  ∈  𝐴 ) | 
						
							| 4 |  | intssuni2 | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ∩  𝑥  ⊆  ∪  𝐴 ) | 
						
							| 5 |  | dfss | ⊢ ( ∩  𝑥  ⊆  ∪  𝐴  ↔  ∩  𝑥  =  ( ∩  𝑥  ∩  ∪  𝐴 ) ) | 
						
							| 6 |  | incom | ⊢ ( ∩  𝑥  ∩  ∪  𝐴 )  =  ( ∪  𝐴  ∩  ∩  𝑥 ) | 
						
							| 7 | 6 | eqeq2i | ⊢ ( ∩  𝑥  =  ( ∩  𝑥  ∩  ∪  𝐴 )  ↔  ∩  𝑥  =  ( ∪  𝐴  ∩  ∩  𝑥 ) ) | 
						
							| 8 |  | eleq1 | ⊢ ( ∩  𝑥  =  ( ∪  𝐴  ∩  ∩  𝑥 )  →  ( ∩  𝑥  ∈  𝐴  ↔  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 9 | 7 8 | sylbi | ⊢ ( ∩  𝑥  =  ( ∩  𝑥  ∩  ∪  𝐴 )  →  ( ∩  𝑥  ∈  𝐴  ↔  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 10 | 9 | biimpd | ⊢ ( ∩  𝑥  =  ( ∩  𝑥  ∩  ∪  𝐴 )  →  ( ∩  𝑥  ∈  𝐴  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 11 | 5 10 | sylbi | ⊢ ( ∩  𝑥  ⊆  ∪  𝐴  →  ( ∩  𝑥  ∈  𝐴  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 12 | 4 11 | syl | ⊢ ( ( 𝑥  ⊆  𝐴  ∧  𝑥  ≠  ∅ )  →  ( ∩  𝑥  ∈  𝐴  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 13 | 12 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ( ∩  𝑥  ∈  𝐴  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 14 | 3 13 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  ∧  𝑥  ≠  ∅ )  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) | 
						
							| 15 | 14 | ex | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  →  ( 𝑥  ≠  ∅  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 16 |  | nne | ⊢ ( ¬  𝑥  ≠  ∅  ↔  𝑥  =  ∅ ) | 
						
							| 17 |  | rint0 | ⊢ ( 𝑥  =  ∅  →  ( ∪  𝐴  ∩  ∩  𝑥 )  =  ∪  𝐴 ) | 
						
							| 18 |  | eleq1a | ⊢ ( ∪  𝐴  ∈  𝐴  →  ( ( ∪  𝐴  ∩  ∩  𝑥 )  =  ∪  𝐴  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 19 | 1 17 18 | syl2im | ⊢ ( 𝜑  →  ( 𝑥  =  ∅  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 20 | 16 19 | biimtrid | ⊢ ( 𝜑  →  ( ¬  𝑥  ≠  ∅  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  →  ( ¬  𝑥  ≠  ∅  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) ) | 
						
							| 22 | 15 21 | pm2.61d | ⊢ ( ( 𝜑  ∧  𝑥  ⊆  𝐴 )  →  ( ∪  𝐴  ∩  ∩  𝑥 )  ∈  𝐴 ) | 
						
							| 23 | 22 | bj-ismooredr | ⊢ ( 𝜑  →  𝐴  ∈  Moore ) |