Metamath Proof Explorer


Theorem bj-ismooredr2

Description: Sufficient condition to be a Moore collection (variant of bj-ismooredr singling out the empty intersection). Note that there is no sethood hypothesis on A : it is a consequence of the first hypothesis. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismooredr2.1 ( 𝜑 𝐴𝐴 )
bj-ismooredr2.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑥 ≠ ∅ ) ) → 𝑥𝐴 )
Assertion bj-ismooredr2 ( 𝜑𝐴Moore )

Proof

Step Hyp Ref Expression
1 bj-ismooredr2.1 ( 𝜑 𝐴𝐴 )
2 bj-ismooredr2.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑥 ≠ ∅ ) ) → 𝑥𝐴 )
3 2 anassrs ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → 𝑥𝐴 )
4 intssuni2 ( ( 𝑥𝐴𝑥 ≠ ∅ ) → 𝑥 𝐴 )
5 dfss ( 𝑥 𝐴 𝑥 = ( 𝑥 𝐴 ) )
6 incom ( 𝑥 𝐴 ) = ( 𝐴 𝑥 )
7 6 eqeq2i ( 𝑥 = ( 𝑥 𝐴 ) ↔ 𝑥 = ( 𝐴 𝑥 ) )
8 eleq1 ( 𝑥 = ( 𝐴 𝑥 ) → ( 𝑥𝐴 ↔ ( 𝐴 𝑥 ) ∈ 𝐴 ) )
9 7 8 sylbi ( 𝑥 = ( 𝑥 𝐴 ) → ( 𝑥𝐴 ↔ ( 𝐴 𝑥 ) ∈ 𝐴 ) )
10 9 biimpd ( 𝑥 = ( 𝑥 𝐴 ) → ( 𝑥𝐴 → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
11 5 10 sylbi ( 𝑥 𝐴 → ( 𝑥𝐴 → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
12 4 11 syl ( ( 𝑥𝐴𝑥 ≠ ∅ ) → ( 𝑥𝐴 → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
13 12 adantll ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( 𝑥𝐴 → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
14 3 13 mpd ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( 𝐴 𝑥 ) ∈ 𝐴 )
15 14 ex ( ( 𝜑𝑥𝐴 ) → ( 𝑥 ≠ ∅ → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
16 nne ( ¬ 𝑥 ≠ ∅ ↔ 𝑥 = ∅ )
17 rint0 ( 𝑥 = ∅ → ( 𝐴 𝑥 ) = 𝐴 )
18 eleq1a ( 𝐴𝐴 → ( ( 𝐴 𝑥 ) = 𝐴 → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
19 1 17 18 syl2im ( 𝜑 → ( 𝑥 = ∅ → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
20 16 19 syl5bi ( 𝜑 → ( ¬ 𝑥 ≠ ∅ → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
21 20 adantr ( ( 𝜑𝑥𝐴 ) → ( ¬ 𝑥 ≠ ∅ → ( 𝐴 𝑥 ) ∈ 𝐴 ) )
22 15 21 pm2.61d ( ( 𝜑𝑥𝐴 ) → ( 𝐴 𝑥 ) ∈ 𝐴 )
23 22 bj-ismooredr ( 𝜑𝐴Moore )