| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-ismooredr2.1 |
⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝐴 ) |
| 2 |
|
bj-ismooredr2.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) ) → ∩ 𝑥 ∈ 𝐴 ) |
| 3 |
2
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ∈ 𝐴 ) |
| 4 |
|
intssuni2 |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∩ 𝑥 ⊆ ∪ 𝐴 ) |
| 5 |
|
dfss |
⊢ ( ∩ 𝑥 ⊆ ∪ 𝐴 ↔ ∩ 𝑥 = ( ∩ 𝑥 ∩ ∪ 𝐴 ) ) |
| 6 |
|
incom |
⊢ ( ∩ 𝑥 ∩ ∪ 𝐴 ) = ( ∪ 𝐴 ∩ ∩ 𝑥 ) |
| 7 |
6
|
eqeq2i |
⊢ ( ∩ 𝑥 = ( ∩ 𝑥 ∩ ∪ 𝐴 ) ↔ ∩ 𝑥 = ( ∪ 𝐴 ∩ ∩ 𝑥 ) ) |
| 8 |
|
eleq1 |
⊢ ( ∩ 𝑥 = ( ∪ 𝐴 ∩ ∩ 𝑥 ) → ( ∩ 𝑥 ∈ 𝐴 ↔ ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 9 |
7 8
|
sylbi |
⊢ ( ∩ 𝑥 = ( ∩ 𝑥 ∩ ∪ 𝐴 ) → ( ∩ 𝑥 ∈ 𝐴 ↔ ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 10 |
9
|
biimpd |
⊢ ( ∩ 𝑥 = ( ∩ 𝑥 ∩ ∪ 𝐴 ) → ( ∩ 𝑥 ∈ 𝐴 → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 11 |
5 10
|
sylbi |
⊢ ( ∩ 𝑥 ⊆ ∪ 𝐴 → ( ∩ 𝑥 ∈ 𝐴 → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 12 |
4 11
|
syl |
⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝐴 → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 13 |
12
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( ∩ 𝑥 ∈ 𝐴 → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 14 |
3 13
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ 𝑥 ≠ ∅ ) → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) |
| 15 |
14
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑥 ≠ ∅ → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 16 |
|
nne |
⊢ ( ¬ 𝑥 ≠ ∅ ↔ 𝑥 = ∅ ) |
| 17 |
|
rint0 |
⊢ ( 𝑥 = ∅ → ( ∪ 𝐴 ∩ ∩ 𝑥 ) = ∪ 𝐴 ) |
| 18 |
|
eleq1a |
⊢ ( ∪ 𝐴 ∈ 𝐴 → ( ( ∪ 𝐴 ∩ ∩ 𝑥 ) = ∪ 𝐴 → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 19 |
1 17 18
|
syl2im |
⊢ ( 𝜑 → ( 𝑥 = ∅ → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 20 |
16 19
|
biimtrid |
⊢ ( 𝜑 → ( ¬ 𝑥 ≠ ∅ → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( ¬ 𝑥 ≠ ∅ → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) ) |
| 22 |
15 21
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( ∪ 𝐴 ∩ ∩ 𝑥 ) ∈ 𝐴 ) |
| 23 |
22
|
bj-ismooredr |
⊢ ( 𝜑 → 𝐴 ∈ Moore ) |