Metamath Proof Explorer


Theorem bj-discrmoore

Description: The powerclass ~P A is a Moore collection if and only if A is a set. It is then called the discrete Moore collection. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Assertion bj-discrmoore ( 𝐴 ∈ V ↔ 𝒫 𝐴Moore )

Proof

Step Hyp Ref Expression
1 unipw 𝒫 𝐴 = 𝐴
2 1 ineq1i ( 𝒫 𝐴 𝑥 ) = ( 𝐴 𝑥 )
3 inex1g ( 𝐴 ∈ V → ( 𝐴 𝑥 ) ∈ V )
4 inss1 ( 𝐴 𝑥 ) ⊆ 𝐴
5 4 a1i ( 𝐴 ∈ V → ( 𝐴 𝑥 ) ⊆ 𝐴 )
6 3 5 elpwd ( 𝐴 ∈ V → ( 𝐴 𝑥 ) ∈ 𝒫 𝐴 )
7 2 6 eqeltrid ( 𝐴 ∈ V → ( 𝒫 𝐴 𝑥 ) ∈ 𝒫 𝐴 )
8 7 adantr ( ( 𝐴 ∈ V ∧ 𝑥 ⊆ 𝒫 𝐴 ) → ( 𝒫 𝐴 𝑥 ) ∈ 𝒫 𝐴 )
9 8 bj-ismooredr ( 𝐴 ∈ V → 𝒫 𝐴Moore )
10 pwexr ( 𝒫 𝐴Moore𝐴 ∈ V )
11 9 10 impbii ( 𝐴 ∈ V ↔ 𝒫 𝐴Moore )