Step |
Hyp |
Ref |
Expression |
1 |
|
bj-ismooredr2.1 |
|- ( ph -> U. A e. A ) |
2 |
|
bj-ismooredr2.2 |
|- ( ( ph /\ ( x C_ A /\ x =/= (/) ) ) -> |^| x e. A ) |
3 |
2
|
anassrs |
|- ( ( ( ph /\ x C_ A ) /\ x =/= (/) ) -> |^| x e. A ) |
4 |
|
intssuni2 |
|- ( ( x C_ A /\ x =/= (/) ) -> |^| x C_ U. A ) |
5 |
|
dfss |
|- ( |^| x C_ U. A <-> |^| x = ( |^| x i^i U. A ) ) |
6 |
|
incom |
|- ( |^| x i^i U. A ) = ( U. A i^i |^| x ) |
7 |
6
|
eqeq2i |
|- ( |^| x = ( |^| x i^i U. A ) <-> |^| x = ( U. A i^i |^| x ) ) |
8 |
|
eleq1 |
|- ( |^| x = ( U. A i^i |^| x ) -> ( |^| x e. A <-> ( U. A i^i |^| x ) e. A ) ) |
9 |
7 8
|
sylbi |
|- ( |^| x = ( |^| x i^i U. A ) -> ( |^| x e. A <-> ( U. A i^i |^| x ) e. A ) ) |
10 |
9
|
biimpd |
|- ( |^| x = ( |^| x i^i U. A ) -> ( |^| x e. A -> ( U. A i^i |^| x ) e. A ) ) |
11 |
5 10
|
sylbi |
|- ( |^| x C_ U. A -> ( |^| x e. A -> ( U. A i^i |^| x ) e. A ) ) |
12 |
4 11
|
syl |
|- ( ( x C_ A /\ x =/= (/) ) -> ( |^| x e. A -> ( U. A i^i |^| x ) e. A ) ) |
13 |
12
|
adantll |
|- ( ( ( ph /\ x C_ A ) /\ x =/= (/) ) -> ( |^| x e. A -> ( U. A i^i |^| x ) e. A ) ) |
14 |
3 13
|
mpd |
|- ( ( ( ph /\ x C_ A ) /\ x =/= (/) ) -> ( U. A i^i |^| x ) e. A ) |
15 |
14
|
ex |
|- ( ( ph /\ x C_ A ) -> ( x =/= (/) -> ( U. A i^i |^| x ) e. A ) ) |
16 |
|
nne |
|- ( -. x =/= (/) <-> x = (/) ) |
17 |
|
rint0 |
|- ( x = (/) -> ( U. A i^i |^| x ) = U. A ) |
18 |
|
eleq1a |
|- ( U. A e. A -> ( ( U. A i^i |^| x ) = U. A -> ( U. A i^i |^| x ) e. A ) ) |
19 |
1 17 18
|
syl2im |
|- ( ph -> ( x = (/) -> ( U. A i^i |^| x ) e. A ) ) |
20 |
16 19
|
syl5bi |
|- ( ph -> ( -. x =/= (/) -> ( U. A i^i |^| x ) e. A ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ x C_ A ) -> ( -. x =/= (/) -> ( U. A i^i |^| x ) e. A ) ) |
22 |
15 21
|
pm2.61d |
|- ( ( ph /\ x C_ A ) -> ( U. A i^i |^| x ) e. A ) |
23 |
22
|
bj-ismooredr |
|- ( ph -> A e. Moore_ ) |