| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-ismooredr2.1 |
|- ( ph -> U. A e. A ) |
| 2 |
|
bj-ismooredr2.2 |
|- ( ( ph /\ ( x C_ A /\ x =/= (/) ) ) -> |^| x e. A ) |
| 3 |
2
|
anassrs |
|- ( ( ( ph /\ x C_ A ) /\ x =/= (/) ) -> |^| x e. A ) |
| 4 |
|
intssuni2 |
|- ( ( x C_ A /\ x =/= (/) ) -> |^| x C_ U. A ) |
| 5 |
|
dfss |
|- ( |^| x C_ U. A <-> |^| x = ( |^| x i^i U. A ) ) |
| 6 |
|
incom |
|- ( |^| x i^i U. A ) = ( U. A i^i |^| x ) |
| 7 |
6
|
eqeq2i |
|- ( |^| x = ( |^| x i^i U. A ) <-> |^| x = ( U. A i^i |^| x ) ) |
| 8 |
|
eleq1 |
|- ( |^| x = ( U. A i^i |^| x ) -> ( |^| x e. A <-> ( U. A i^i |^| x ) e. A ) ) |
| 9 |
7 8
|
sylbi |
|- ( |^| x = ( |^| x i^i U. A ) -> ( |^| x e. A <-> ( U. A i^i |^| x ) e. A ) ) |
| 10 |
9
|
biimpd |
|- ( |^| x = ( |^| x i^i U. A ) -> ( |^| x e. A -> ( U. A i^i |^| x ) e. A ) ) |
| 11 |
5 10
|
sylbi |
|- ( |^| x C_ U. A -> ( |^| x e. A -> ( U. A i^i |^| x ) e. A ) ) |
| 12 |
4 11
|
syl |
|- ( ( x C_ A /\ x =/= (/) ) -> ( |^| x e. A -> ( U. A i^i |^| x ) e. A ) ) |
| 13 |
12
|
adantll |
|- ( ( ( ph /\ x C_ A ) /\ x =/= (/) ) -> ( |^| x e. A -> ( U. A i^i |^| x ) e. A ) ) |
| 14 |
3 13
|
mpd |
|- ( ( ( ph /\ x C_ A ) /\ x =/= (/) ) -> ( U. A i^i |^| x ) e. A ) |
| 15 |
14
|
ex |
|- ( ( ph /\ x C_ A ) -> ( x =/= (/) -> ( U. A i^i |^| x ) e. A ) ) |
| 16 |
|
nne |
|- ( -. x =/= (/) <-> x = (/) ) |
| 17 |
|
rint0 |
|- ( x = (/) -> ( U. A i^i |^| x ) = U. A ) |
| 18 |
|
eleq1a |
|- ( U. A e. A -> ( ( U. A i^i |^| x ) = U. A -> ( U. A i^i |^| x ) e. A ) ) |
| 19 |
1 17 18
|
syl2im |
|- ( ph -> ( x = (/) -> ( U. A i^i |^| x ) e. A ) ) |
| 20 |
16 19
|
biimtrid |
|- ( ph -> ( -. x =/= (/) -> ( U. A i^i |^| x ) e. A ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ x C_ A ) -> ( -. x =/= (/) -> ( U. A i^i |^| x ) e. A ) ) |
| 22 |
15 21
|
pm2.61d |
|- ( ( ph /\ x C_ A ) -> ( U. A i^i |^| x ) e. A ) |
| 23 |
22
|
bj-ismooredr |
|- ( ph -> A e. Moore_ ) |