Metamath Proof Explorer


Theorem bj-ismooredr2

Description: Sufficient condition to be a Moore collection (variant of bj-ismooredr singling out the empty intersection). Note that there is no sethood hypothesis on A : it is a consequence of the first hypothesis. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismooredr2.1 φAA
bj-ismooredr2.2 φxAxxA
Assertion bj-ismooredr2 φAMoore_

Proof

Step Hyp Ref Expression
1 bj-ismooredr2.1 φAA
2 bj-ismooredr2.2 φxAxxA
3 2 anassrs φxAxxA
4 intssuni2 xAxxA
5 dfss xAx=xA
6 incom xA=Ax
7 6 eqeq2i x=xAx=Ax
8 eleq1 x=AxxAAxA
9 7 8 sylbi x=xAxAAxA
10 9 biimpd x=xAxAAxA
11 5 10 sylbi xAxAAxA
12 4 11 syl xAxxAAxA
13 12 adantll φxAxxAAxA
14 3 13 mpd φxAxAxA
15 14 ex φxAxAxA
16 nne ¬xx=
17 rint0 x=Ax=A
18 eleq1a AAAx=AAxA
19 1 17 18 syl2im φx=AxA
20 16 19 biimtrid φ¬xAxA
21 20 adantr φxA¬xAxA
22 15 21 pm2.61d φxAAxA
23 22 bj-ismooredr φAMoore_