Description: Sufficient condition to be a Moore collection (variant of bj-ismooredr singling out the empty intersection). Note that there is no sethood hypothesis on A : it is a consequence of the first hypothesis. (Contributed by BJ, 9-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-ismooredr2.1 | |
|
bj-ismooredr2.2 | |
||
Assertion | bj-ismooredr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-ismooredr2.1 | |
|
2 | bj-ismooredr2.2 | |
|
3 | 2 | anassrs | |
4 | intssuni2 | |
|
5 | dfss | |
|
6 | incom | |
|
7 | 6 | eqeq2i | |
8 | eleq1 | |
|
9 | 7 8 | sylbi | |
10 | 9 | biimpd | |
11 | 5 10 | sylbi | |
12 | 4 11 | syl | |
13 | 12 | adantll | |
14 | 3 13 | mpd | |
15 | 14 | ex | |
16 | nne | |
|
17 | rint0 | |
|
18 | eleq1a | |
|
19 | 1 17 18 | syl2im | |
20 | 16 19 | biimtrid | |
21 | 20 | adantr | |
22 | 15 21 | pm2.61d | |
23 | 22 | bj-ismooredr | |