Metamath Proof Explorer


Theorem bj-ismooredr2

Description: Sufficient condition to be a Moore collection (variant of bj-ismooredr singling out the empty intersection). Note that there is no sethood hypothesis on A : it is a consequence of the first hypothesis. (Contributed by BJ, 9-Dec-2021)

Ref Expression
Hypotheses bj-ismooredr2.1 φ A A
bj-ismooredr2.2 φ x A x x A
Assertion bj-ismooredr2 φ A Moore _

Proof

Step Hyp Ref Expression
1 bj-ismooredr2.1 φ A A
2 bj-ismooredr2.2 φ x A x x A
3 2 anassrs φ x A x x A
4 intssuni2 x A x x A
5 dfss x A x = x A
6 incom x A = A x
7 6 eqeq2i x = x A x = A x
8 eleq1 x = A x x A A x A
9 7 8 sylbi x = x A x A A x A
10 9 biimpd x = x A x A A x A
11 5 10 sylbi x A x A A x A
12 4 11 syl x A x x A A x A
13 12 adantll φ x A x x A A x A
14 3 13 mpd φ x A x A x A
15 14 ex φ x A x A x A
16 nne ¬ x x =
17 rint0 x = A x = A
18 eleq1a A A A x = A A x A
19 1 17 18 syl2im φ x = A x A
20 16 19 syl5bi φ ¬ x A x A
21 20 adantr φ x A ¬ x A x A
22 15 21 pm2.61d φ x A A x A
23 22 bj-ismooredr φ A Moore _