Metamath Proof Explorer


Theorem rint0

Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion rint0 X=AX=A

Proof

Step Hyp Ref Expression
1 inteq X=X=
2 1 ineq2d X=AX=A
3 int0 =V
4 3 ineq2i A=AV
5 inv1 AV=A
6 4 5 eqtri A=A
7 2 6 eqtrdi X=AX=A