Metamath Proof Explorer


Theorem elrint

Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion elrint XABXAyBXy

Proof

Step Hyp Ref Expression
1 elin XABXAXB
2 elintg XAXByBXy
3 2 pm5.32i XAXBXAyBXy
4 1 3 bitri XABXAyBXy