Metamath Proof Explorer


Theorem elrint2

Description: Membership in a restricted intersection. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Assertion elrint2 X A X A B y B X y

Proof

Step Hyp Ref Expression
1 elrint X A B X A y B X y
2 1 baib X A X A B y B X y