Metamath Proof Explorer


Theorem bj-elsn12g

Description: Join of elsng and elsn2g . (Contributed by BJ, 18-Nov-2023)

Ref Expression
Assertion bj-elsn12g
|- ( ( A e. V \/ B e. W ) -> ( A e. { B } <-> A = B ) )

Proof

Step Hyp Ref Expression
1 elsng
 |-  ( A e. V -> ( A e. { B } <-> A = B ) )
2 elsn2g
 |-  ( B e. W -> ( A e. { B } <-> A = B ) )
3 1 2 jaoi
 |-  ( ( A e. V \/ B e. W ) -> ( A e. { B } <-> A = B ) )